• Sqoop学习之路 (一)


    一、概述

    sqoop 是 apache 旗下一款“Hadoop 和关系数据库服务器之间传送数据”的工具。

    核心的功能有两个:

    导入、迁入

    导出、迁出

    导入数据:MySQL,Oracle 导入数据到 Hadoop 的 HDFS、HIVE、HBASE 等数据存储系统

    导出数据:从 Hadoop 的文件系统中导出数据到关系数据库 mysql 等 Sqoop 的本质还是一个命令行工具,和 HDFS,Hive 相比,并没有什么高深的理论。

    sqoop:

    工具:本质就是迁移数据, 迁移的方式:就是把sqoop的迁移命令转换成MR程序

    hive

    工具,本质就是执行计算,依赖于HDFS存储数据,把SQL转换成MR程序

    二、工作机制

    将导入或导出命令翻译成 MapReduce 程序来实现 在翻译出的 MapReduce 中主要是对 InputFormat 和 OutputFormat 进行定制

    三、安装

    1、前提概述

    将来sqoop在使用的时候有可能会跟那些系统或者组件打交道?

    HDFS, MapReduce, YARN, ZooKeeper, Hive, HBase, MySQL

    sqoop就是一个工具, 只需要在一个节点上进行安装即可。

    补充一点: 如果你的sqoop工具将来要进行hive或者hbase等等的系统和MySQL之间的交互

    你安装的SQOOP软件的节点一定要包含以上你要使用的集群或者软件系统的安装包

    补充一点: 将来要使用的azakban这个软件 除了会调度 hadoop的任务或者hbase或者hive的任务之外, 还会调度sqoop的任务

    azkaban这个软件的安装节点也必须包含以上这些软件系统的客户端/2、

    2、软件下载

    下载地址http://mirrors.hust.edu.cn/apache/

    sqoop版本说明

    绝大部分企业所使用的sqoop的版本都是 sqoop1

    sqoop-1.4.6 或者 sqoop-1.4.7 它是 sqoop1

    sqoop-1.99.4----都是 sqoop2

    此处使用sqoop-1.4.6版本sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

    3、安装步骤

    (1)上传解压缩安装包到指定目录

    因为之前hive只是安装在hadoop3机器上,所以sqoop也同样安装在hadoop3机器上

    [hadoop@hadoop3 ~]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C apps/

    (2)进入到 conf 文件夹,找到 sqoop-env-template.sh,修改其名称为 sqoop-env.sh cd conf

    [hadoop@hadoop3 ~]$ cd apps/
    [hadoop@hadoop3 apps]$ ls
    apache-hive-2.3.3-bin  hadoop-2.7.5  hbase-1.2.6  sqoop-1.4.6.bin__hadoop-2.0.4-alpha  zookeeper-3.4.10
    [hadoop@hadoop3 apps]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop-1.4.6
    [hadoop@hadoop3 apps]$ cd sqoop-1.4.6/conf/
    [hadoop@hadoop3 conf]$ ls
    oraoop-site-template.xml  sqoop-env-template.sh    sqoop-site.xml
    sqoop-env-template.cmd    sqoop-site-template.xml
    [hadoop@hadoop3 conf]$ mv sqoop-env-template.sh sqoop-env.sh

    (3)修改 sqoop-env.sh

    [hadoop@hadoop3 conf]$ vi sqoop-env.sh 
    export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.7.5
    
    #Set path to where hadoop-*-core.jar is available
    export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.7.5
    
    #set the path to where bin/hbase is available
    export HBASE_HOME=/home/hadoop/apps/hbase-1.2.6
    
    #Set the path to where bin/hive is available
    export HIVE_HOME=/home/hadoop/apps/apache-hive-2.3.3-bin
    
    #Set the path for where zookeper config dir is
    export ZOOCFGDIR=/home/hadoop/apps/zookeeper-3.4.10/conf

    为什么在sqoop-env.sh 文件中会要求分别进行 common和mapreduce的配置呢???

    在apache的hadoop的安装中;四大组件都是安装在同一个hadoop_home中的

    但是在CDH, HDP中, 这些组件都是可选的。

    在安装hadoop的时候,可以选择性的只安装HDFS或者YARN,

    CDH,HDP在安装hadoop的时候,会把HDFS和MapReduce有可能分别安装在不同的地方。

    (4)加入 mysql 驱动包到 sqoop1.4.6/lib 目录下

    [hadoop@hadoop3 ~]$ cp mysql-connector-java-5.1.40-bin.jar apps/sqoop-1.4.6/lib/

    (5)配置系统环境变量

    [hadoop@hadoop3 ~]$ vi .bashrc 
    #Sqoop
    export SQOOP_HOME=/home/hadoop/apps/sqoop-1.4.6
    export PATH=$PATH:$SQOOP_HOME/bin

    保存退出使其立即生效

    [hadoop@hadoop3 ~]$ source .bashrc 

    (6)验证安装是否成功

     sqoop-version 或者 sqoop version

    四、Sqoop的基本命令

    基本操作

    首先,我们可以使用 sqoop help 来查看,sqoop 支持哪些命令

    [hadoop@hadoop3 ~]$ sqoop help
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:37:19 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    usage: sqoop COMMAND [ARGS]
    
    Available commands:
      codegen            Generate code to interact with database records
      create-hive-table  Import a table definition into Hive
      eval               Evaluate a SQL statement and display the results
      export             Export an HDFS directory to a database table
      help               List available commands
      import             Import a table from a database to HDFS
      import-all-tables  Import tables from a database to HDFS
      import-mainframe   Import datasets from a mainframe server to HDFS
      job                Work with saved jobs
      list-databases     List available databases on a server
      list-tables        List available tables in a database
      merge              Merge results of incremental imports
      metastore          Run a standalone Sqoop metastore
      version            Display version information
    
    See 'sqoop help COMMAND' for information on a specific command.
    [hadoop@hadoop3 ~]$ 

    然后得到这些支持了的命令之后,如果不知道使用方式,可以使用 sqoop command 的方式 来查看某条具体命令的使用方式,比如:

    [hadoop@hadoop3 ~]$ sqoop help import
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:38:29 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    usage: sqoop import [GENERIC-ARGS] [TOOL-ARGS]
    
    Common arguments:
       --connect <jdbc-uri>                         Specify JDBC connect
                                                    string
       --connection-manager <class-name>            Specify connection manager
                                                    class name
       --connection-param-file <properties-file>    Specify connection
                                                    parameters file
       --driver <class-name>                        Manually specify JDBC
                                                    driver class to use
       --hadoop-home <hdir>                         Override
                                                    $HADOOP_MAPRED_HOME_ARG
       --hadoop-mapred-home <dir>                   Override
                                                    $HADOOP_MAPRED_HOME_ARG
       --help                                       Print usage instructions
    -P                                              Read password from console
       --password <password>                        Set authentication
                                                    password
       --password-alias <password-alias>            Credential provider
                                                    password alias
       --password-file <password-file>              Set authentication
                                                    password file path
       --relaxed-isolation                          Use read-uncommitted
                                                    isolation for imports
       --skip-dist-cache                            Skip copying jars to
                                                    distributed cache
       --username <username>                        Set authentication
                                                    username
       --verbose                                    Print more information
                                                    while working
    
    Import control arguments:
       --append                                                   Imports data
                                                                  in append
                                                                  mode
       --as-avrodatafile                                          Imports data
                                                                  to Avro data
                                                                  files
       --as-parquetfile                                           Imports data
                                                                  to Parquet
                                                                  files
       --as-sequencefile                                          Imports data
                                                                  to
                                                                  SequenceFile
                                                                  s
       --as-textfile                                              Imports data
                                                                  as plain
                                                                  text
                                                                  (default)
       --autoreset-to-one-mapper                                  Reset the
                                                                  number of
                                                                  mappers to
                                                                  one mapper
                                                                  if no split
                                                                  key
                                                                  available
       --boundary-query <statement>                               Set boundary
                                                                  query for
                                                                  retrieving
                                                                  max and min
                                                                  value of the
                                                                  primary key
       --columns <col,col,col...>                                 Columns to
                                                                  import from
                                                                  table
       --compression-codec <codec>                                Compression
                                                                  codec to use
                                                                  for import
       --delete-target-dir                                        Imports data
                                                                  in delete
                                                                  mode
       --direct                                                   Use direct
                                                                  import fast
                                                                  path
       --direct-split-size <n>                                    Split the
                                                                  input stream
                                                                  every 'n'
                                                                  bytes when
                                                                  importing in
                                                                  direct mode
    -e,--query <statement>                                        Import
                                                                  results of
                                                                  SQL
                                                                  'statement'
       --fetch-size <n>                                           Set number
                                                                  'n' of rows
                                                                  to fetch
                                                                  from the
                                                                  database
                                                                  when more
                                                                  rows are
                                                                  needed
       --inline-lob-limit <n>                                     Set the
                                                                  maximum size
                                                                  for an
                                                                  inline LOB
    -m,--num-mappers <n>                                          Use 'n' map
                                                                  tasks to
                                                                  import in
                                                                  parallel
       --mapreduce-job-name <name>                                Set name for
                                                                  generated
                                                                  mapreduce
                                                                  job
       --merge-key <column>                                       Key column
                                                                  to use to
                                                                  join results
       --split-by <column-name>                                   Column of
                                                                  the table
                                                                  used to
                                                                  split work
                                                                  units
       --table <table-name>                                       Table to
                                                                  read
       --target-dir <dir>                                         HDFS plain
                                                                  table
                                                                  destination
       --validate                                                 Validate the
                                                                  copy using
                                                                  the
                                                                  configured
                                                                  validator
       --validation-failurehandler <validation-failurehandler>    Fully
                                                                  qualified
                                                                  class name
                                                                  for
                                                                  ValidationFa
                                                                  ilureHandler
       --validation-threshold <validation-threshold>              Fully
                                                                  qualified
                                                                  class name
                                                                  for
                                                                  ValidationTh
                                                                  reshold
       --validator <validator>                                    Fully
                                                                  qualified
                                                                  class name
                                                                  for the
                                                                  Validator
       --warehouse-dir <dir>                                      HDFS parent
                                                                  for table
                                                                  destination
       --where <where clause>                                     WHERE clause
                                                                  to use
                                                                  during
                                                                  import
    -z,--compress                                                 Enable
                                                                  compression
    
    Incremental import arguments:
       --check-column <column>        Source column to check for incremental
                                      change
       --incremental <import-type>    Define an incremental import of type
                                      'append' or 'lastmodified'
       --last-value <value>           Last imported value in the incremental
                                      check column
    
    Output line formatting arguments:
       --enclosed-by <char>               Sets a required field enclosing
                                          character
       --escaped-by <char>                Sets the escape character
       --fields-terminated-by <char>      Sets the field separator character
       --lines-terminated-by <char>       Sets the end-of-line character
       --mysql-delimiters                 Uses MySQL's default delimiter set:
                                          fields: ,  lines: 
      escaped-by: 
                                          optionally-enclosed-by: '
       --optionally-enclosed-by <char>    Sets a field enclosing character
    
    Input parsing arguments:
       --input-enclosed-by <char>               Sets a required field encloser
       --input-escaped-by <char>                Sets the input escape
                                                character
       --input-fields-terminated-by <char>      Sets the input field separator
       --input-lines-terminated-by <char>       Sets the input end-of-line
                                                char
       --input-optionally-enclosed-by <char>    Sets a field enclosing
                                                character
    
    Hive arguments:
       --create-hive-table                         Fail if the target hive
                                                   table exists
       --hive-database <database-name>             Sets the database name to
                                                   use when importing to hive
       --hive-delims-replacement <arg>             Replace Hive record 0x01
                                                   and row delimiters (
    
    )
                                                   from imported string fields
                                                   with user-defined string
       --hive-drop-import-delims                   Drop Hive record 0x01 and
                                                   row delimiters (
    
    ) from
                                                   imported string fields
       --hive-home <dir>                           Override $HIVE_HOME
       --hive-import                               Import tables into Hive
                                                   (Uses Hive's default
                                                   delimiters if none are
                                                   set.)
       --hive-overwrite                            Overwrite existing data in
                                                   the Hive table
       --hive-partition-key <partition-key>        Sets the partition key to
                                                   use when importing to hive
       --hive-partition-value <partition-value>    Sets the partition value to
                                                   use when importing to hive
       --hive-table <table-name>                   Sets the table name to use
                                                   when importing to hive
       --map-column-hive <arg>                     Override mapping for
                                                   specific column to hive
                                                   types.
    
    HBase arguments:
       --column-family <family>    Sets the target column family for the
                                   import
       --hbase-bulkload            Enables HBase bulk loading
       --hbase-create-table        If specified, create missing HBase tables
       --hbase-row-key <col>       Specifies which input column to use as the
                                   row key
       --hbase-table <table>       Import to <table> in HBase
    
    HCatalog arguments:
       --hcatalog-database <arg>                        HCatalog database name
       --hcatalog-home <hdir>                           Override $HCAT_HOME
       --hcatalog-partition-keys <partition-key>        Sets the partition
                                                        keys to use when
                                                        importing to hive
       --hcatalog-partition-values <partition-value>    Sets the partition
                                                        values to use when
                                                        importing to hive
       --hcatalog-table <arg>                           HCatalog table name
       --hive-home <dir>                                Override $HIVE_HOME
       --hive-partition-key <partition-key>             Sets the partition key
                                                        to use when importing
                                                        to hive
       --hive-partition-value <partition-value>         Sets the partition
                                                        value to use when
                                                        importing to hive
       --map-column-hive <arg>                          Override mapping for
                                                        specific column to
                                                        hive types.
    
    HCatalog import specific options:
       --create-hcatalog-table            Create HCatalog before import
       --hcatalog-storage-stanza <arg>    HCatalog storage stanza for table
                                          creation
    
    Accumulo arguments:
       --accumulo-batch-size <size>          Batch size in bytes
       --accumulo-column-family <family>     Sets the target column family for
                                             the import
       --accumulo-create-table               If specified, create missing
                                             Accumulo tables
       --accumulo-instance <instance>        Accumulo instance name.
       --accumulo-max-latency <latency>      Max write latency in milliseconds
       --accumulo-password <password>        Accumulo password.
       --accumulo-row-key <col>              Specifies which input column to
                                             use as the row key
       --accumulo-table <table>              Import to <table> in Accumulo
       --accumulo-user <user>                Accumulo user name.
       --accumulo-visibility <vis>           Visibility token to be applied to
                                             all rows imported
       --accumulo-zookeepers <zookeepers>    Comma-separated list of
                                             zookeepers (host:port)
    
    Code generation arguments:
       --bindir <dir>                        Output directory for compiled
                                             objects
       --class-name <name>                   Sets the generated class name.
                                             This overrides --package-name.
                                             When combined with --jar-file,
                                             sets the input class.
       --input-null-non-string <null-str>    Input null non-string
                                             representation
       --input-null-string <null-str>        Input null string representation
       --jar-file <file>                     Disable code generation; use
                                             specified jar
       --map-column-java <arg>               Override mapping for specific
                                             columns to java types
       --null-non-string <null-str>          Null non-string representation
       --null-string <null-str>              Null string representation
       --outdir <dir>                        Output directory for generated
                                             code
       --package-name <name>                 Put auto-generated classes in
                                             this package
    
    Generic Hadoop command-line arguments:
    (must preceed any tool-specific arguments)
    Generic options supported are
    -conf <configuration file>     specify an application configuration file
    -D <property=value>            use value for given property
    -fs <local|namenode:port>      specify a namenode
    -jt <local|resourcemanager:port>    specify a ResourceManager
    -files <comma separated list of files>    specify comma separated files to be copied to the map reduce cluster
    -libjars <comma separated list of jars>    specify comma separated jar files to include in the classpath.
    -archives <comma separated list of archives>    specify comma separated archives to be unarchived on the compute machines.
    
    The general command line syntax is
    bin/hadoop command [genericOptions] [commandOptions]
    
    
    At minimum, you must specify --connect and --table
    Arguments to mysqldump and other subprograms may be supplied
    after a '--' on the command line.
    [hadoop@hadoop3 ~]$ 
    View Code

    示例

    列出MySQL数据有哪些数据库

    [hadoop@hadoop3 ~]$ sqoop list-databases 
    > --connect jdbc:mysql://hadoop1:3306/ 
    > --username root 
    > --password root
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:43:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    18/04/12 13:43:51 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
    18/04/12 13:43:51 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
    information_schema
    hivedb
    mysql
    performance_schema
    test
    [hadoop@hadoop3 ~]$ 

    列出MySQL中的某个数据库有哪些数据表:

    
    

    [hadoop@hadoop3 ~]$ sqoop list-tables
    > --connect jdbc:mysql://hadoop1:3306/mysql
    > --username root
    > --password root

    [hadoop@hadoop3 ~]$ sqoop list-tables 
    > --connect jdbc:mysql://hadoop1:3306/mysql 
    > --username root 
    > --password root
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:46:21 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    18/04/12 13:46:21 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
    18/04/12 13:46:21 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
    columns_priv
    db
    event
    func
    general_log
    help_category
    help_keyword
    help_relation
    help_topic
    innodb_index_stats
    innodb_table_stats
    ndb_binlog_index
    plugin
    proc
    procs_priv
    proxies_priv
    servers
    slave_master_info
    slave_relay_log_info
    slave_worker_info
    slow_log
    tables_priv
    time_zone
    time_zone_leap_second
    time_zone_name
    time_zone_transition
    time_zone_transition_type
    user
    [hadoop@hadoop3 ~]$
    View Code

    创建一张跟mysql中的help_keyword表一样的hive表hk:

    sqoop create-hive-table 
    --connect jdbc:mysql://hadoop1:3306/mysql 
    --username root 
    --password root 
    --table help_keyword 
    --hive-table hk
    [hadoop@hadoop3 ~]$ sqoop create-hive-table 
    > --connect jdbc:mysql://hadoop1:3306/mysql 
    > --username root 
    > --password root 
    > --table help_keyword 
    > --hive-table hk
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:50:20 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    18/04/12 13:50:20 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
    18/04/12 13:50:20 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
    18/04/12 13:50:20 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
    18/04/12 13:50:20 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
    18/04/12 13:50:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    18/04/12 13:50:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
    18/04/12 13:50:23 INFO hive.HiveImport: Loading uploaded data into Hive
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Class path contains multiple SLF4J bindings.
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
    18/04/12 13:50:36 INFO hive.HiveImport: 
    18/04/12 13:50:36 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/hive-common-2.3.3.jar!/hive-log4j2.properties Async: true
    18/04/12 13:50:50 INFO hive.HiveImport: OK
    18/04/12 13:50:50 INFO hive.HiveImport: Time taken: 11.651 seconds
    18/04/12 13:50:51 INFO hive.HiveImport: Hive import complete.
    [hadoop@hadoop3 ~]$ 
    View Code

    五、Sqoop的数据导入

    “导入工具”导入单个表从 RDBMS 到 HDFS。表中的每一行被视为 HDFS 的记录。所有记录 都存储为文本文件的文本数据(或者 Avro、sequence 文件等二进制数据) 

    1、从RDBMS导入到HDFS中

    语法格式

    sqoop import (generic-args) (import-args)

    常用参数

    --connect <jdbc-uri> jdbc 连接地址
    --connection-manager <class-name> 连接管理者
    --driver <class-name> 驱动类
    --hadoop-mapred-home <dir> $HADOOP_MAPRED_HOME
    --help help 信息
    -P 从命令行输入密码
    --password <password> 密码
    --username <username> 账号
    --verbose 打印流程信息
    --connection-param-file <filename> 可选参数

    示例

    普通导入:导入mysql库中的help_keyword的数据到HDFS上

    导入的默认路径:/user/hadoop/help_keyword

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --table help_keyword   
    -m 1
    [hadoop@hadoop3 ~]$ sqoop import   
    > --connect jdbc:mysql://hadoop1:3306/mysql   
    > --username root  
    > --password root   
    > --table help_keyword   
    > -m 1
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 13:53:48 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    18/04/12 13:53:48 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
    18/04/12 13:53:48 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
    18/04/12 13:53:48 INFO tool.CodeGenTool: Beginning code generation
    18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    18/04/12 13:53:49 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
    注: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.java使用或覆盖了已过时的 API。
    注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
    18/04/12 13:53:51 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.jar
    18/04/12 13:53:51 WARN manager.MySQLManager: It looks like you are importing from mysql.
    18/04/12 13:53:51 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
    18/04/12 13:53:51 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
    18/04/12 13:53:51 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
    18/04/12 13:53:51 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
    18/04/12 13:53:52 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
    18/04/12 13:53:53 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
    18/04/12 13:53:58 INFO db.DBInputFormat: Using read commited transaction isolation
    18/04/12 13:53:58 INFO mapreduce.JobSubmitter: number of splits:1
    18/04/12 13:53:59 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0001
    18/04/12 13:54:00 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0001
    18/04/12 13:54:00 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0001/
    18/04/12 13:54:00 INFO mapreduce.Job: Running job: job_1523510178850_0001
    18/04/12 13:54:17 INFO mapreduce.Job: Job job_1523510178850_0001 running in uber mode : false
    18/04/12 13:54:17 INFO mapreduce.Job:  map 0% reduce 0%
    18/04/12 13:54:33 INFO mapreduce.Job:  map 100% reduce 0%
    18/04/12 13:54:34 INFO mapreduce.Job: Job job_1523510178850_0001 completed successfully
    18/04/12 13:54:35 INFO mapreduce.Job: Counters: 30
        File System Counters
            FILE: Number of bytes read=0
            FILE: Number of bytes written=142965
            FILE: Number of read operations=0
            FILE: Number of large read operations=0
            FILE: Number of write operations=0
            HDFS: Number of bytes read=87
            HDFS: Number of bytes written=8264
            HDFS: Number of read operations=4
            HDFS: Number of large read operations=0
            HDFS: Number of write operations=2
        Job Counters 
            Launched map tasks=1
            Other local map tasks=1
            Total time spent by all maps in occupied slots (ms)=12142
            Total time spent by all reduces in occupied slots (ms)=0
            Total time spent by all map tasks (ms)=12142
            Total vcore-milliseconds taken by all map tasks=12142
            Total megabyte-milliseconds taken by all map tasks=12433408
        Map-Reduce Framework
            Map input records=619
            Map output records=619
            Input split bytes=87
            Spilled Records=0
            Failed Shuffles=0
            Merged Map outputs=0
            GC time elapsed (ms)=123
            CPU time spent (ms)=1310
            Physical memory (bytes) snapshot=93212672
            Virtual memory (bytes) snapshot=2068234240
            Total committed heap usage (bytes)=17567744
        File Input Format Counters 
            Bytes Read=0
        File Output Format Counters 
            Bytes Written=8264
    18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Transferred 8.0703 KB in 41.8111 seconds (197.6507 bytes/sec)
    18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Retrieved 619 records.
    [hadoop@hadoop3 ~]$ 
    View Code

    查看导入的文件

    [hadoop@hadoop4 ~]$ hadoop fs -cat /user/hadoop/help_keyword/part-m-00000

     

    导入: 指定分隔符和导入路径

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --table help_keyword   
    --target-dir /user/hadoop11/my_help_keyword1  
    --fields-terminated-by '	'  
    -m 2

    导入数据:带where条件

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --where "name='STRING' " 
    --table help_keyword   
    --target-dir /sqoop/hadoop11/myoutport1  
    -m 1

    查询指定列

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --columns "name" 
    --where "name='STRING' " 
    --table help_keyword  
    --target-dir /sqoop/hadoop11/myoutport22  
    -m 1
    selct name from help_keyword where name = "string"

    导入:指定自定义查询SQL

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/  
    --username root  
    --password root   
    --target-dir /user/hadoop/myimport33_1  
    --query 'select help_keyword_id,name from mysql.help_keyword where $CONDITIONS and name = "STRING"' 
    --split-by  help_keyword_id 
    --fields-terminated-by '	'  
    -m 4

    在以上需要按照自定义SQL语句导出数据到HDFS的情况下:
    1、引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义
    2、自定义的SQL语句中必须带有WHERE $CONDITIONS

    2、把MySQL数据库中的表数据导入到Hive中

    Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive

    普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名:

    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --table help_keyword   
    --hive-import 
    -m 1

    导入过程

    第一步:导入mysql.help_keyword的数据到hdfs的默认路径
    第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中
    第三步:把临时目录中的数据导入到hive表中

    查看数据

    [hadoop@hadoop3 ~]$ hadoop fs -cat /user/hive/warehouse/help_keyword/part-m-00000

    指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录

    sqoop import  
    --connect jdbc:mysql://hadoop1:3306/mysql  
    --username root  
    --password root  
    --table help_keyword  
    --fields-terminated-by "	"  
    --lines-terminated-by "
    "  
    --hive-import  
    --hive-overwrite  
    --create-hive-table  
    --delete-target-dir 
    --hive-database  mydb_test 
    --hive-table new_help_keyword

     报错原因是hive-import 当前这个导入命令。 sqoop会自动给创建hive的表。 但是不会自动创建不存在的库

    手动创建mydb_test数据块

    hive> create database mydb_test;
    OK
    Time taken: 6.147 seconds
    hive> 

    之后再执行上面的语句没有报错

    查询一下

    select * from new_help_keyword limit 10;

     

    上面的导入语句等价于

    sqoop import  
    --connect jdbc:mysql://hadoop1:3306/mysql  
    --username root  
    --password root  
    --table help_keyword  
    --fields-terminated-by "	"  
    --lines-terminated-by "
    "  
    --hive-import  
    --hive-overwrite  
    --create-hive-table   
    --hive-table  mydb_test.new_help_keyword  
    --delete-target-dir

    增量导入

    执行增量导入之前,先清空hive数据库中的help_keyword表中的数据

    truncate table help_keyword;
    sqoop import   
    --connect jdbc:mysql://hadoop1:3306/mysql   
    --username root  
    --password root   
    --table help_keyword  
    --target-dir /user/hadoop/myimport_add  
    --incremental  append  
    --check-column  help_keyword_id 
    --last-value 500  
    -m 1

    语句执行成功

    [hadoop@hadoop3 ~]$ sqoop import   
    > --connect jdbc:mysql://hadoop1:3306/mysql   
    > --username root  
    > --password root   
    > --table help_keyword  
    > --target-dir /user/hadoop/myimport_add  
    > --incremental  append  
    > --check-column  help_keyword_id 
    > --last-value 500  
    > -m 1
    Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    18/04/12 22:01:07 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
    18/04/12 22:01:08 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
    18/04/12 22:01:08 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
    18/04/12 22:01:08 INFO tool.CodeGenTool: Beginning code generation
    18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
    18/04/12 22:01:08 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
    注: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.java使用或覆盖了已过时的 API。
    注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
    18/04/12 22:01:11 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.jar
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
    18/04/12 22:01:12 INFO tool.ImportTool: Maximal id query for free form incremental import: SELECT MAX(`help_keyword_id`) FROM `help_keyword`
    18/04/12 22:01:12 INFO tool.ImportTool: Incremental import based on column `help_keyword_id`
    18/04/12 22:01:12 INFO tool.ImportTool: Lower bound value: 500
    18/04/12 22:01:12 INFO tool.ImportTool: Upper bound value: 618
    18/04/12 22:01:12 WARN manager.MySQLManager: It looks like you are importing from mysql.
    18/04/12 22:01:12 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
    18/04/12 22:01:12 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
    18/04/12 22:01:12 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
    18/04/12 22:01:12 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
    18/04/12 22:01:12 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
    18/04/12 22:01:12 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
    18/04/12 22:01:17 INFO db.DBInputFormat: Using read commited transaction isolation
    18/04/12 22:01:17 INFO mapreduce.JobSubmitter: number of splits:1
    18/04/12 22:01:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0010
    18/04/12 22:01:19 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0010
    18/04/12 22:01:19 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0010/
    18/04/12 22:01:19 INFO mapreduce.Job: Running job: job_1523510178850_0010
    18/04/12 22:01:30 INFO mapreduce.Job: Job job_1523510178850_0010 running in uber mode : false
    18/04/12 22:01:30 INFO mapreduce.Job:  map 0% reduce 0%
    18/04/12 22:01:40 INFO mapreduce.Job:  map 100% reduce 0%
    18/04/12 22:01:40 INFO mapreduce.Job: Job job_1523510178850_0010 completed successfully
    18/04/12 22:01:41 INFO mapreduce.Job: Counters: 30
        File System Counters
            FILE: Number of bytes read=0
            FILE: Number of bytes written=143200
            FILE: Number of read operations=0
            FILE: Number of large read operations=0
            FILE: Number of write operations=0
            HDFS: Number of bytes read=87
            HDFS: Number of bytes written=1576
            HDFS: Number of read operations=4
            HDFS: Number of large read operations=0
            HDFS: Number of write operations=2
        Job Counters 
            Launched map tasks=1
            Other local map tasks=1
            Total time spent by all maps in occupied slots (ms)=7188
            Total time spent by all reduces in occupied slots (ms)=0
            Total time spent by all map tasks (ms)=7188
            Total vcore-milliseconds taken by all map tasks=7188
            Total megabyte-milliseconds taken by all map tasks=7360512
        Map-Reduce Framework
            Map input records=118
            Map output records=118
            Input split bytes=87
            Spilled Records=0
            Failed Shuffles=0
            Merged Map outputs=0
            GC time elapsed (ms)=86
            CPU time spent (ms)=870
            Physical memory (bytes) snapshot=95576064
            Virtual memory (bytes) snapshot=2068234240
            Total committed heap usage (bytes)=18608128
        File Input Format Counters 
            Bytes Read=0
        File Output Format Counters 
            Bytes Written=1576
    18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Transferred 1.5391 KB in 28.3008 seconds (55.6875 bytes/sec)
    18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Retrieved 118 records.
    18/04/12 22:01:41 INFO util.AppendUtils: Creating missing output directory - myimport_add
    18/04/12 22:01:41 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments:
    18/04/12 22:01:41 INFO tool.ImportTool:  --incremental append
    18/04/12 22:01:41 INFO tool.ImportTool:   --check-column help_keyword_id
    18/04/12 22:01:41 INFO tool.ImportTool:   --last-value 618
    18/04/12 22:01:41 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')
    [hadoop@hadoop3 ~]$ 
    View Code

     查看结果

    3、把MySQL数据库中的表数据导入到hbase

     普通导入

    sqoop import 
    --connect jdbc:mysql://hadoop1:3306/mysql 
    --username root 
    --password root 
    --table help_keyword 
    --hbase-table new_help_keyword 
    --column-family person 
    --hbase-row-key help_keyword_id

    此时会报错,因为需要先创建Hbase里面的表,再执行导入的语句

    hbase(main):001:0> create 'new_help_keyword', 'base_info'
    0 row(s) in 3.6280 seconds
    
    => Hbase::Table - new_help_keyword
    hbase(main):002:0> 
  • 相关阅读:
    linux 定时脚本任务的创建
    win10 Edge 无法上网代理服务器错误
    CentOS 7 系统root用户忘记密码的重置方法
    通过挂载系统光盘搭建本地yum仓库的方法
    Oauth服务端协议开发
    mongodb 用户权限控制
    javascript 数组方法拼接html标签
    存储管理与linux内存寻址(1)
    原型模式
    背包,队列,栈的java实现
  • 原文地址:https://www.cnblogs.com/qingyunzong/p/8807252.html
Copyright © 2020-2023  润新知