• 区间DP经典 石子合并


    题目链接

    题意:环形的一群石子,每次可以选择相邻的两堆合并,分数为新得到的一堆石子,求将这片石子合并成一堆的最大和最小分数

    输入:第一行一个正整数n,其后n个数代表每堆石子的个数

    分析:第一次写的时候我想当然的写的状态转移方程是dpx[l][r]=max(dpx[l+1][r]+a[l][r],dpx[l][r-1]+a[l][r]);(dpx是指这个dp数组用来求最大分数),想的是左右逼近,但是我这个状态转移方程有个非常致命的缺点,那就是合并的两堆石头,一定有一堆是没经过合并的,这很明显无法代表全部情况,万一正解就是左边一半合并成一起,右边一半合并成一起,然后左右合并,我的算法就肯定得不到答案。

    搜了搜正解,正解状态转移方程是dp1[l][r]=max(dp1[l][r],dp1[l][k]+dp1[k+1][r]+d(l,r));通过枚举一个k来实现将左右两堆合并在一起的情况

    然后再注意题目中的石子是成环的,所以需要用2n的数组来存储,最后遍历也是同样。

    另外dp[i][i]这种单一数组的分数是0,所以dp2数组决不能一开始fill成inf,只能在一个具体的定义下设为inf,具体看代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int inf=1<<30;
    const int maxn=210;
    const double pi=acos(-1);
    const int mod=1e9+7;
    int a[maxn],sum[maxn];
    int dp1[maxn][maxn],dp2[maxn][maxn];
    int d(int x,int y){
        return sum[y]-sum[x-1];
    }
    int main(){
        int n;scanf("%d",&n);
        //fill((int *)dp2,(int *)dp2+maxn*maxn,inf);
        for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i+n]=a[i];
        sum[i]=sum[i-1]+a[i];
        }
        for(int i=n+1;i<=2*n;i++){
            sum[i]=sum[i-1]+a[i];
        }
        for(int len=2;len<=n;len++){
            for(int l=1;(l+len-1)<=2*n;l++){
                int r=l+len-1;
                dp2[l][r]=inf; 
                for(int k=l;k<r;k++){//注意k是比r小的,因为是左边是l到k,右边是k+1-r 
                    dp1[l][r]=max(dp1[l][r],dp1[l][k]+dp1[k+1][r]+d(l,r));
                    dp2[l][r]=min(dp2[l][r],dp2[l][k]+dp2[k+1][r]+d(l,r));
                }
            }
        }
        int mx=0,mn=inf;
        for(int i=1;i<=n;i++){
            mx=max(mx,dp1[i][i+n-1]);
            mn=min(mn,dp2[i][i+n-1]);
        }
        cout<<mn<<endl<<mx<<endl;
        return 0;
    }
  • 相关阅读:
    muduo 库解析之四:TimeZone
    muduo 库解析之三:Date
    muduo 库解析之九:Condition
    muduo 库解析之八:Mutex
    muduo 库解析之七:Atomic
    [linux]查看文件目录是否为硬链接
    [go] 解决:concurrent write to websocket connection
    [windows] 保存浏览器网页长截图
    [项目] 系统迁移的几个注意点
    [MySQL] order by field 自定义排序
  • 原文地址:https://www.cnblogs.com/qingjiuling/p/10615159.html
Copyright © 2020-2023  润新知