一、ECMAScript 和 JavaScript 的关系
要讲清楚这个问题,需要回顾历史。1996 年 11 月,JavaScript 的创造者 Netscape 公司,决定将 JavaScript 提交给标准化组织 ECMA,希望这种语言能够成为国际标准。次年,ECMA 发布 262 号标准文件(ECMA-262)的第一版,规定了浏览器脚本语言的标准,并将这种语言称为 ECMAScript,这个版本就是 1.0 版。
该标准从一开始就是针对 JavaScript 语言制定的,但是之所以不叫 JavaScript,有两个原因。一是商标,Java 是 Sun 公司的商标,根据授权协议,只有 Netscape 公司可以合法地使用 JavaScript 这个名字,且 JavaScript 本身也已经被 Netscape 公司注册为商标。二是想体现这门语言的制定者是 ECMA,不是 Netscape,这样有利于保证这门语言的开放性和中立性。
因此,ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前者的一种实现(另外的 ECMAScript 方言还有 JScript 和 ActionScript)。日常场合,这两个词是可以互换的。
二、class类和对象
1、简介
①面向对象的思维特点:抽取(抽象)对象共用的属性和行为组织(封装)成一个类(模版)、对类进行实例化,获取类的对象。
②js中:对象是一组无序的相关属性和方法的集合,所有的事物都是对象。由属性和方法组成。(属性:事物的特征,方法:事物的行为)
③在ES6中可以使用class关键字声明一个类,之后以这个类来实例化对象。
2、实例
基本用法:通过class
关键字,可以定义类。constructor()
方法,这就是构造方法,而this
关键字则代表实例对象
class Point { //构造方法 constructor(x, y) { //this关键字则代表实例对象 this.x = x; this.y = y; } //不需要加function,方法与方法之间不需要逗号分隔 toString() { return '(' + this.x + ', ' + this.y + ')'; } }
类的继承:通过extends
关键字实现继承
class Point { constructor(x, y) { this.x = x; this.y = y; } } class ColorPoint extends Point { constructor(x, y, color) { this.color = color; // ReferenceError //在子类的构造函数中,只有调用super之后,才可以使用this关键字 super(x, y); this.color = color; // 正确 } } //Object.getPrototypeOf方法可以用来从子类上获取父类。可以使用这个方法判断,一个类是否继承了另一个类。 Object.getPrototypeOf(ColorPoint) === Point
三、let和const
1、let 语句声明一个块级作用域的本地变量,并且可选的将其初始化为一个值。
let
允许你声明一个作用域被限制在 块
级中的变量、语句或者表达式。与 var
关键字不同的是, var
声明的变量只能是全局或者整个函数块的。 var
和 let
的不同之处在于后者是在编译时才初始化(见下面)。
//作用域规则 function varTest() { var x = 1; { var x = 2; // 同样的变量! console.log(x); // 2 } console.log(x); // 2 } function letTest() { let x = 1; { let x = 2; // 不同的变量 console.log(x); // 2 } console.log(x); // 1 }
let
声明的变量只在其声明的块或子块中可用,这一点,与var
相似。二者之间最主要的区别在于var
声明的变量的作用域是整个封闭函数。
2、const常量是块级范围的,非常类似用 let 语句定义的变量。但常量的值是无法(通过重新赋值)改变的,也不能被重新声明。
语法:const name1 = value1 [, name2 = value2 [, ... [, nameN = valueN]]];
nameN
常量名称,可以是任意合法的标识符。valueN
常量值,可以是任意合法的表达式。
此声明创建一个常量,其作用域可以是全局或本地声明的块。 与var
变量不同,全局常量不会变为 window 对象的属性。需要一个常数的初始化器;也就是说,您必须在声明的同一语句中指定它的值(这是有道理的,因为以后不能更改)。
// 定义常量MY_FAV并赋值7 const MY_FAV = 7; // 报错 - Uncaught TypeError: Assignment to constant variable. MY_FAV = 20; // MY_FAV is 7 console.log('my favorite number is: ' + MY_FAV); // 尝试重新声明会报错 // Uncaught SyntaxError: Identifier 'MY_FAV' has already been declared const MY_FAV = 20; // MY_FAV 保留给上面的常量,这个操作会失败 var MY_FAV = 20; // 也会报错 let MY_FAV = 20;
四、数值的扩展
1、ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b
(或0B
)和0o
(或0O
)表示。
0b111110111 === 503 // true 0o767 === 503 // true
2、ES6 在Number
对象上,新提供了Number.isFinite()
和Number.isNaN()
两个方法。
Number.isFinite()
用来检查一个数值是否为有限的(finite),即不是Infinity
。
Number.isFinite(15); // true Number.isFinite(0.8); // true Number.isFinite(NaN); // false Number.isFinite(Infinity); // false Number.isFinite(-Infinity); // false Number.isFinite('foo'); // false Number.isFinite('15'); // false Number.isFinite(true); // false
Number.isNaN()
用来检查一个值是否为NaN
。
Number.isNaN(NaN) // true Number.isNaN(15) // false Number.isNaN('15') // false Number.isNaN(true) // false Number.isNaN(9/NaN) // true Number.isNaN('true' / 0) // true Number.isNaN('true' / 'true') // true
它们与传统的全局方法isFinite()
和isNaN()
的区别在于,传统方法先调用Number()
将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()
对于非数值一律返回false
, Number.isNaN()
只有对于NaN
才返回true
,非NaN
一律返回false
。
3、ES6 将全局方法parseInt()
和parseFloat()
,移植到Number
对象上面,行为完全保持不变。
目的是逐步减少全局性方法,使得语言逐步模块化
Number.parseInt === parseInt // true Number.parseFloat === parseFloat // true
4、Number.isInteger()
用来判断一个数值是否为整数。
Number.isInteger(25) // true Number.isInteger(25.1) // false
5、ES6 在Number
对象上面,新增一个极小的常量Number.EPSILON
。根据规格,它表示 1 与大于 1 的最小浮点数之间的差。
五、数组的扩展
1、扩展运算符(spread)是三个点(...
)。它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列。
// 1 2 3 console.log(1, ...[2, 3, 4], 5) // 1 2 3 4 5 [...document.querySelectorAll('div')] // [<div>, <div>, <div>]
替代apply方法
// ES5 的写法 function f(x, y, z) { // ... } var args = [0, 1, 2]; f.apply(null, args); // ES6的写法 function f(x, y, z) { // ... } let args = [0, 1, 2]; f(...args);
2、Array.from
方法用于将两类对象转为真正的数组:类似数组的对象(array-like object)和可遍历(iterable)的对象(包括 ES6 新增的数据结构 Set 和 Map)。
let arrayLike = { '0': 'a', '1': 'b', '2': 'c', length: 3 }; // ES5的写法 var arr1 = [].slice.call(arrayLike); // ['a', 'b', 'c'] // ES6的写法 let arr2 = Array.from(arrayLike); // ['a', 'b', 'c']
3、Array.of()
方法用于将一组值,转换为数组。
Array.of(3, 11, 8) // [3,11,8] Array.of(3) // [3] Array.of(3).length // 1
4、数组实例的-find-和-findIndex
①数组实例的find
方法,用于找出第一个符合条件的数组成员。它的参数是一个回调函数,所有数组成员依次执行该回调函数,直到找出第一个返回值为true
的成员,然后返回该成员。如果没有符合条件的成员,则返回undefined
。
[1, 4, -5, 10].find((n) => n < 0) // -5
上面代码找出数组中第一个小于 0 的成员。
[1, 5, 10, 15].find(function(value, index, arr) { return value > 9; }) // 10
上面代码中,find
方法的回调函数可以接受三个参数,依次为当前的值、当前的位置和原数组。
②数组实例的findIndex
方法的用法与find
方法非常类似,返回第一个符合条件的数组成员的位置,如果所有成员都不符合条件,则返回-1
。
[1, 5, 10, 15].findIndex(function(value, index, arr) { return value > 9; }) // 2
另外,这两个方法都可以发现NaN
,弥补了数组的indexOf
方法的不足。
[NaN].indexOf(NaN) // -1 [NaN].findIndex(y => Object.is(NaN, y)) // 0
6、数组实例fill,fill
方法使用给定值,填充一个数组。
['a', 'b', 'c'].fill(7) // [7, 7, 7] new Array(3).fill(7) // [7, 7, 7]
上面代码表明,fill
方法用于空数组的初始化非常方便。数组中已有的元素,会被全部抹去。
fill
方法还可以接受第二个和第三个参数,用于指定填充的起始位置和结束位置。
['a', 'b', 'c'].fill(7, 1, 2) // ['a', 7, 'c']
7、ES6 提供三个新的方法——entries()
,keys()
和values()
——用于遍历数组。它们都返回一个遍历器对象(详见《Iterator》一章),可以用for...of
循环进行遍历,唯一的区别是keys()
是对键名的遍历、values()
是对键值的遍历,entries()
是对键值对的遍历。
for (let index of ['a', 'b'].keys()) { console.log(index); } // 0 // 1 for (let elem of ['a', 'b'].values()) { console.log(elem); } // 'a' // 'b' for (let [index, elem] of ['a', 'b'].entries()) { console.log(index, elem); } // 0 "a" // 1 "b"
如果不使用for...of
循环,可以手动调用遍历器对象的next
方法,进行遍历。
let letter = ['a', 'b', 'c']; let entries = letter.entries(); console.log(entries.next().value); // [0, 'a'] console.log(entries.next().value); // [1, 'b'] console.log(entries.next().value); // [2, 'c']
8、Array.prototype.includes
方法返回一个布尔值,表示某个数组是否包含给定的值,与字符串的includes
方法类似。ES2016 引入了该方法。
[1, 2, 3].includes(2) // true [1, 2, 3].includes(4) // false [1, 2, NaN].includes(NaN) // true
9、数组实例的-flat,flatMap
①数组的成员有时还是数组,Array.prototype.flat()
用于将嵌套的数组“拉平”,变成一维的数组。该方法返回一个新数组,对原数据没有影响。
[1, 2, [3, 4]].flat() // [1, 2, 3, 4]
flat()
默认只会“拉平”一层,如果想要“拉平”多层的嵌套数组,可以将flat()
方法的参数写成一个整数,表示想要拉平的层数,默认为1。
[1, 2, [3, [4, 5]]].flat() // [1, 2, 3, [4, 5]] [1, 2, [3, [4, 5]]].flat(2) // [1, 2, 3, 4, 5]
如果不管有多少层嵌套,都要转成一维数组,可以用Infinity
关键字作为参数。
[1, [2, [3]]].flat(Infinity) // [1, 2, 3]
如果原数组有空位,flat()
方法会跳过空位。
[1, 2, , 4, 5].flat() // [1, 2, 4, 5]
②flatMap()
方法对原数组的每个成员执行一个函数(相当于执行Array.prototype.map()
),然后对返回值组成的数组执行flat()
方法。该方法返回一个新数组,不改变原数组。
// 相当于 [[2, 4], [3, 6], [4, 8]].flat() [2, 3, 4].flatMap((x) => [x, x * 2]) // [2, 4, 3, 6, 4, 8]
10、数组实例的copyWithin()
方法,在当前数组内部,将指定位置的成员复制到其他位置(会覆盖原有成员),然后返回当前数组。也就是说,使用这个方法,会修改当前数组。
Array.prototype.copyWithin(target, start = 0, end = this.length)
它接受三个参数。
- target(必需):从该位置开始替换数据。如果为负值,表示倒数。
- start(可选):从该位置开始读取数据,默认为 0。如果为负值,表示从末尾开始计算。
- end(可选):到该位置前停止读取数据,默认等于数组长度。如果为负值,表示从末尾开始计算。
这三个参数都应该是数值,如果不是,会自动转为数值。
// 将3号位复制到0号位 [1, 2, 3, 4, 5].copyWithin(0, 3, 4) // [4, 2, 3, 4, 5] // -2相当于3号位,-1相当于4号位 [1, 2, 3, 4, 5].copyWithin(0, -2, -1) // [4, 2, 3, 4, 5] // 将3号位复制到0号位 [].copyWithin.call({length: 5, 3: 1}, 0, 3) // {0: 1, 3: 1, length: 5} // 将2号位到数组结束,复制到0号位 let i32a = new Int32Array([1, 2, 3, 4, 5]); i32a.copyWithin(0, 2); // Int32Array [3, 4, 5, 4, 5] // 对于没有部署 TypedArray 的 copyWithin 方法的平台 // 需要采用下面的写法 [].copyWithin.call(new Int32Array([1, 2, 3, 4, 5]), 0, 3, 4); // Int32Array [4, 2, 3, 4, 5]