[2016-2017 ACM-ICPC CHINA-Final]Problem C. Mr. Panda and Strips(DP+线段树)
题目链接:
(https://codeforces.com/gym/101194)
题面:
题意:
给定一个长度为(mathit n)的数列,你可以选择两个不互相交的连续子序列或者一个连续子序列。要求选择的子序列中不能有重复的数字,问你最多能包含多少种数字(即长度最大)?
思路:
首先(O(n^2logn)/O(n^2+nlogn))复杂度内动态规划预处理出(dp[i][j])代表([i,j])这个区间内可以最长的不包含重复数字的连续子序列。
我们设答案由两个区间构成,其中右区间可以为空区间。
然后我们枚举左区间的左端点(iin[1,n]),然后枚举左区间的右端点(jin[i,n]),
对于每一个右端点(mathit j),我们可以用(set)判断([i,j-1])中是否已经出现过(c_j),
若已经出现过,则(j-1),已经是(mathit i) 作为左端点的极大右端点了。右移左端点即可。
若未出现过,则代表([i,j])是一个合法的区间,我们用线段树维护([j+1,n])中最长的合法区间。
方法:我们维护区间中每一个位置(k)当且是被哪个最长的合法区间包含。需要两颗线段树,一个维护区间的左端点,另一位维护区间的右端点。配合一个multiset存区间的dp值。
对于每一个(mathit j),我们将在右边区间中的所有(c_j)值得位置(pos)更新,若(pos)当且在区间([l,r]),因为已经不能再取(c_j)这个数字了,所以我们将(dp[l][r])拆为(dp[l][pos-1],dp[pos+1][r])两个区间。对应得就是线段树得单点查询,区间更新和multiset得删除和插入操作。
对每一个右端点(mathit j),然后更新答案(j-i+1+multiset.maxnum)。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <bits/stdc++.h>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), ' ', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define chu(x) if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
");}}}
inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
' : ' ');}}
void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
' : ' ');}}
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
#define DEBUG_Switch 0
int n;
int a[maxn];
struct node {
int l, r;
int val;
} segment_tree[maxn << 2][2];
void build(int rt, int l, int r, int v, int id)
{
segment_tree[rt][id].l = l;
segment_tree[rt][id].r = r;
segment_tree[rt][id].val=0;
if (l == r) {
segment_tree[rt][id].val = v;
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid, v, id);
build(rt << 1 | 1, mid + 1, r, v, id);
}
void pushdown(int rt, int id)
{
if (segment_tree[rt][id].val) {
segment_tree[rt << 1][id].val = segment_tree[rt][id].val;
segment_tree[rt << 1 | 1][id].val = segment_tree[rt][id].val;
segment_tree[rt][id].val = 0;
}
}
void update(int rt, int l, int r, int v, int id)
{
if(l>r)
return ;
if (segment_tree[rt][id].l >= l && segment_tree[rt][id].r <= r) {
segment_tree[rt][id].val = v;
return ;
}
pushdown(rt, id);
int mid = (segment_tree[rt][id].l + segment_tree[rt][id].r) >> 1;
if (mid >= l) {
update(rt << 1, l, r, v, id);
}
if (mid < r) {
update(rt << 1 | 1, l, r, v, id);
}
}
int query(int rt, int pos, int id)
{
if (segment_tree[rt][id].l == pos && segment_tree[rt][id].r == pos) {
return segment_tree[rt][id].val;
}
pushdown(rt, id);
int mid = (segment_tree[rt][id].l + segment_tree[rt][id].r) >> 1;
if (mid >= pos) {
return query(rt << 1, pos, id);
} else {
return query(rt << 1 | 1, pos, id);
}
}
std::vector<int> v[100010];
int dp[1002][1002];
int main()
{
#if DEBUG_Switch
freopen("D:\code\input.txt", "r", stdin);
#endif
//freopen("D:\code\output.txt","w",stdout);
int t;
t = readint();
for (int icase = 1; icase <= t; ++icase) {
n = readint();
repd(i, 1, n) {
a[i] = readint();
v[a[i]].pb(i);
}
int ans = 1;
set<int> vis;
multiset<int> st;
repd(i, 1, n) {
int j;
for (j = i; j <= n; ++j) {
if (vis.count(a[j]) == 0) {
dp[i][j] = j - i + 1;
vis.insert(a[j]);
} else {
break;
}
}
for (; j <= n; ++j) {
dp[i][j] = dp[i][j - 1];
}
vis.clear();
}
repd(len, 2, n - 1) {
repd(i, 1, n) {
int j = i + len - 1;
if(j<=n)
dp[i][j] = max(dp[i][j], max(dp[i + 1][j], dp[i][j - 1]));
}
}
repd(i, 1, n) {
build(1, i, n, i, 0);
build(1, i, n, n, 1);
st.insert(dp[i][n]);
st.insert(0);
repd(j, i, n) {
if (vis.count(a[j]) == 0) {
vis.insert(a[j]);
for (auto pos : v[a[j]]) {
if (pos >= i) {
int l = query(1, pos, 0);
int r = query(1, pos, 1);
update(1, pos + 1, r, pos + 1, 0);
update(1, l, pos - 1, pos - 1, 1);
auto it = st.lower_bound(dp[l][r]);
st.erase(it);
if (l < r) {
st.insert(dp[l][pos - 1]);
st.insert(dp[pos + 1][r]);
}
}
}
ans = max(ans, (*(--st.end())) + j - i + 1);
} else {
break;
}
}
vis.clear();
st.clear();
}
printf("Case #%d: %d
", icase, ans );
repd(i, 1, n) {
v[a[i]].clear();
}
repd(i, 1, n) {
repd(j, 1, n) {
dp[i][j] = 0;
}
}
}
return 0;
}