• Educational Codeforces Round 81 (Rated for Div. 2)] D. Same GCDs (数论,因子分解,容斥定理)


    [Educational Codeforces Round 81 (Rated for Div. 2)] D. Same GCDs (数论,因子分解,容斥定理)

    D. Same GCDs

    time limit per test

    2 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    You are given two integers aa and mm. Calculate the number of integers xx such that 0≤x<m0≤x<m and gcd(a,m)=gcd(a+x,m)gcd(a,m)=gcd(a+x,m).

    Note: gcd(a,b)gcd(a,b) is the greatest common divisor of aa and bb.

    Input

    The first line contains the single integer TT (1≤T≤501≤T≤50) — the number of test cases.

    Next TT lines contain test cases — one per line. Each line contains two integers aa and mm (1≤a<m≤10101≤a<m≤1010).

    Output

    Print TT integers — one per test case. For each test case print the number of appropriate xx-s.

    Example

    input

    Copy

    3
    4 9
    5 10
    42 9999999967
    

    output

    Copy

    6
    1
    9999999966
    

    Note

    In the first test case appropriate xx-s are [0,1,3,4,6,7][0,1,3,4,6,7].

    In the second test case the only appropriate xx is 00.

    题意:

    T组数据,

    每一组数据给定两个整数a和m

    问有多少个x满足:

    (0 le x < m)(gcd(a, m) = gcd(a + x, m))

    思路:

    (b=gcd(a,m)),那么问题等同于问:

    区间([a,a+m-1]) 中有多少个数x使(gcd(x,m)=b)

    又因为(gcd(x/b,m/b)=1) , 所以问题可以转化为 :

    区间([a/b,(a+m-1)/b]) 中有多少个数x使(gcd(x,m/b)=1)

    即区间([a/b,(a+m-1)/b])中有多少个数x与m/b互质。

    我们知道这是一个因子分解+容斥定理的经典问题。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    vector<ll> list;
    void  breakdown(ll x)
    {
        list.clear();
        for (ll i = 2; i * i <= x; ++i) {
            int cnt = 0;
            while (x % i == 0) {
                ++cnt;
                x /= i;
            }
            if (cnt) {
                list.push_back(i);
            }
        }
        if (x > 1) {
            list.push_back(x);
        }
    }
    
    int main()
    {
        //freopen("D:\code\text\input.txt","r",stdin);
        //freopen("D:\code\text\output.txt","w",stdout);
        int t;
        t = readint();
        ll a, m;
        while (t--)
        {
            a = readll();
            m = readll();
            ll b = gcd(a, m);
            breakdown(m / b);
            ll l = a;
            ll r = a + m - 1;
            l /= b;
            r /= b;
            ll ans = 0;
            int len = list.size();
            for (int i = 0; i < (1 << len); ++i) {
                int cnt = 0;
                ll pp = 1ll;
                for (int j = 0; j < len; ++j) {
                    if (i & (1 << j)) {
                        ++cnt;
                        pp *= list[j];
                    }
                }
                ans += (r / pp - (l - 1) / pp) * ((cnt & 1) ? -1 : 1);
            }
            printf("%lld
    ", ans );
        }
        return 0;
    }
    
    
    
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    Vue中computed和watch的区别
    JS基础语法
    JDBC
    表设计
    查询语句
    反射
    网络端
    多线程
    HashMap
    IO
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/12245160.html
Copyright © 2020-2023  润新知