wls 有 n 个二次函数 Fi(x) = aix2 + bix + ci (1 ≤ i ≤ n).
现在他想在∑ni=1xi = m 且 x 为正整数的条件下求∑ni=1Fi(xi)的最小值。
请求出这个最小值。
Input
第一行两个正整数 n, m。
下面 n 行,每行三个整数 a, b, c 分别代表二次函数的二次项, 一次项,常数项系数。
1 ≤ n ≤ m ≤ 100, 000
1 ≤ a ≤ 1, 000
−1, 000 ≤ b, c ≤ 1, 000
Output
一行一个整数表示答案。
Sample Input
2 3
1 1 1
2 2 2
Sample Output
13
思路:
因为题目要求所以的xi 都要为正整数,那么每一个xi最小也要是1 ,所以我们先给每一个xi赋值为1,
同时,我们用堆来维护对于每一个二次函数 当前的 F(xi+1) - F( xi ) 为什么维护这个数?
因为当前的xi值对应的函数值是F(xi ) 我们要让sum xi = m 如果 M>n 肯定要给一些二次函数值得xi增加数值的,那么我们通过维护的这个信息,
每一次贪心的去增加一个让 那个函数值 xi 增加为 xi+1 最答案的贡献是最小。
重复此过程,直至sum xi = m
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), ' ', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct node
{
ll a,b,c;
ll x;
ll val;
bool operator < (const node & t) const
{
return val>t.val;
}
};
priority_queue<node> heap;
int n;
int m;
ll gao(ll a,ll b, ll c ,ll x)
{
return a*x*x+b*x+c;
}
int main()
{
//freopen("D:\common_text\code_stream\in.txt","r",stdin);
//freopen("D:\common_text\code_stream\out.txt","w",stdout);
gbtb;
cin>>n>>m;
ll a,b,c;
ll ans=0ll;
repd(i,1,n)
{
cin>>a>>b>>c;
node temp;
temp.a=a;
temp.b=b;
temp.c=c;
temp.x=1;
temp.val=gao(a,b,c,2)-gao(a,b,c,1);
heap.push(temp);
}
m-=n;
while(m--)
{
node temp=heap.top();
heap.pop();
temp.x++;
temp.val=gao(temp.a,temp.b,temp.c,temp.x+1)-gao(temp.a,temp.b,temp.c,temp.x);
heap.push(temp);
}
while(!heap.empty())
{
node temp=heap.top();
heap.pop();
ans+=gao(temp.a,temp.b,temp.c,temp.x);
}
cout<<ans<<endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '
');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}