• すぬけ君の塗り絵 / Snuke's Coloring AtCoder


    Problem Statement

     

    We have a grid with H rows and W columns. At first, all cells were painted white.

    Snuke painted N of these cells. The i-th ( 1≤iN ) cell he painted is the cell at the ai-th row and bi-th column.

    Compute the following:

    • For each integer j ( 0≤j≤9 ), how many subrectangles of size 3×3 of the grid contains exactly j black cells, after Snuke painted N cells?

    Constraints

     

    • 3≤H≤109
    • 3≤W≤109
    • 0≤Nmin(105,H×W)
    • 1≤aiH (1≤iN)
    • 1≤biW (1≤iN)
    • (ai,bi)≠(aj,bj) (ij)

    Input

     

    The input is given from Standard Input in the following format:

    H W N
    a1 b1
    :
    aN bN
    

    Output

     

    Print 10 lines. The (j+1)-th ( 0≤j≤9 ) line should contain the number of the subrectangles of size 3×3 of the grid that contains exactly j black cells.

    Sample Input 1

     

    4 5 8
    1 1
    1 4
    1 5
    2 3
    3 1
    3 2
    3 4
    4 4
    

    Sample Output 1

     

    0
    0
    0
    2
    4
    0
    0
    0
    0
    0
    

    There are six subrectangles of size 3×3. Two of them contain three black cells each, and the remaining four contain four black cells each.

    Sample Input 2

     

    10 10 20
    1 1
    1 4
    1 9
    2 5
    3 10
    4 2
    4 7
    5 9
    6 4
    6 6
    6 7
    7 1
    7 3
    7 7
    8 1
    8 5
    8 10
    9 2
    10 4
    10 9
    

    Sample Output 2

     

    4
    26
    22
    10
    2
    0
    0
    0
    0
    0
    

    Sample Input 3

     

    1000000000 1000000000 0
    

    Sample Output 3

     

    999999996000000004
    0
    0
    0
    0
    0
    0
    0
    0
    0

    题意:
    给定一个高为h,宽为w的矩阵,然后给你n个黑色块的坐标。
    让你求出所有大小为3*3的矩阵分别包含了多少个黑色块,
    你只需要输出含有0~9个黑色块的个数的矩阵数量分别是多少。

    思路:
    由于h和w的数量很大,没有办法进行直接标记模拟。、
    我们思考如下:每一个黑色的方块只会对9个3*3的矩阵有贡献。

    看图:

    看图可以知道,蓝色圆圈的位置如果是黑色块,可以对以红色点为左上角起点的3*3的区间有贡献。

    那么我们对每一个黑色块算出的一共9个的贡献矩阵,全部加入到一个数组中,排序后处理答案即可。

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define rt return
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=1000010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    struct node
    {
        ll x,y;
    }a[maxn];
    ll n;
    ll h,w;
    ll xx[]={-2,-2,-2,-1,-1,-1,0,0,0};
    ll yy[]={-2,-1,0,-2,-1,0,-2,-1,0};
    ll ans[1000];
    ll mod=1e9+7;
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_text\code_stream\out.txt","w",stdout);
        gbtb;
        cin>>h>>w>>n;
        repd(i,1,n)
        {
            cin>>a[i].x>>a[i].y;
        }
        vector<ll> v;
        repd(i,1,n)
        {
            repd(j,0,8)
            {
                ll x=a[i].x+xx[j];
                ll y=a[i].y+yy[j];
                if(x>=1&&x+2<=h&&y>=1&&y+2<=w)
                {
    //                cout<<x<<" "<<y<<endl;
                    ll num=(x)*mod+y;
                    v.push_back(num);
                }
            }
        }
        sort(ALL(v));
        v.push_back(-9ll);
        ll ww=1ll;
        ll ans0=(h-2ll)*(w-2ll);
        for(int i=0;i<v.size()-1;i++)
        {
    //        db(v[i]);
            if(v[i]==v[i+1])
            {
                ww++;
            }else
            {
                ans[ww]++;
                ww=1ll;
                ans0--;
            }
        }
        cout<<ans0<<endl;
        repd(i,1,9)
        {
            cout<<ans[i]<<endl;
        }
    
    
    
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }

    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    4月1日作业总结,成绩
    4月8日作业重点及点评
    构建之法 东北师大站 冲刺领跑
    4月1日作业重点及点评
    3月25日作业总结,成绩
    3月18日作业总结,成绩
    3月25日作业重点及点评
    python: 反射机制;
    python: 基本知识(一)
    opencv: 轮廓提取;
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/10713861.html
Copyright © 2020-2023  润新知