• 二分法细节


    二分查找算法

    一、二分查找的框架

    int binarySearch(int[] nums, int target) {
       int left = 0, right = ...;
    
    while(...) {
         int mid = (right + left) / 2;
         if (nums[mid] == target) {
           ...
         } else if (nums[mid] < target) {
           left = ...
         } else if (nums[mid] > target) {
           right = ...
         }
       }
       return ...;
     }
    

    分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

    其中...标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

    另外声明一下,计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2,本文暂时忽略这个问题。

    二、寻找一个数(基本的二分搜索)

    这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

    左闭右闭的模板

    int binarySearch(int[] nums, int target) {
       int left = 0; 
       int right = nums.length - 1; // 注意
    
    while(left <= right) { // 注意
         int mid = (right + left) / 2;
         if(nums[mid] == target)
           return mid; 
         else if (nums[mid] < target)
           left = mid + 1; // 注意
         else if (nums[mid] > target)
           right = mid - 1; // 注意
         }
       return -1;
     }
    
    1. 为什么 while 循环的条件中是 <=,而不是 < ?

      • 答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。
      • 这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。
      • 我们这个算法中使用的是 [left, right] 两端都闭的区间。这个区间就是每次进行搜索的区间,我们不妨称为「搜索区间」(search space)
      • 什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止
      if(nums[mid] == target)
        return mid; 
      
      • 但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
      • while(left <= right)的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
      • while(left < right)的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就可能出现错误。
      • 当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:
      //...
       while(left < right) {
         // ...
       }
       return nums[left] == target ? left : -1; //注意 如果是插入位置 需要先判段left是否越界
      
    2. 为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

      • 答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
      • 刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?
      • 当然是去搜索 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。
    3. 此算法有什么缺陷?

      • 答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
      • 比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
      • 这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的时间复杂度了。
      • 我们后续的算法就来讨论这两种二分查找的算法。(左闭右开插入位置刚好大于的 二分方法)

    三、寻找左侧边界的二分搜索

    //搜索>=target的第一个位置

    直接看代码,其中的标记是需要注意的细节: //正常二分法左闭右开的模板

    int left_bound(int[] nums, int target) {
       if (nums.length == 0) return -1;
       int left = 0;
       int right = nums.length; // 注意
    
    while (left < right) { // 注意
         int mid = (left + right) / 2;
         if (nums[mid] == target) {
           right = mid;
         } else if (nums[mid] < target) {
           left = mid + 1;
         } else if (nums[mid] > target) {
           right = mid; // 注意
         }
       }
       return left;
     }
    
    1. 为什么 while(left < right) 而不是 <= ? //注意 仅仅是因为right的初始化 两种模板没有差别 都可以使用

      • 答:用相同的方法分析,因为初始化 right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。
      • while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 恰巧为空,所以可以正确终止。
    2. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

      • 答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

        ​ target = 2

        pos: left mid mid+1 right

        nums: 1 2 2 4

        index: 0 1 2 3 4

      • 对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个

      • 比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。如果 target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

      • 综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

      while (left < right) {
         //...
       }
       // target 比所有数都大
       if (left == nums.length) return -1; //[1,2,2,4]搜索8返回left 4,越界
       // 类似之前算法的处理方式
       return nums[left] == target ? left : -1;
      
    3. 为什么 left = mid + 1,right = mid ?和之前的算法不一样?

    • 答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。(mid已被被搜索判断)
    1. 为什么该算法能够搜索左侧边界?

      • 答:关键在于对于 nums[mid] == target 这种情况的处理:
      if (nums[mid] == target)
           right = mid;
      
      • 可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的
    2. 为什么返回 left 而不是 right?

      • 答:返回left和right都是一样的,因为 while 终止的条件是 left == right。
    3. 经测试, 两种写法返回值完全一致

        //二分法细节 <写法
        int left_bound(vector<int> nums, int target) {
          if (nums.size() == 0)
            return -1;
          int left = 0;
          int right = nums.size(); // 注意
      
          while (left < right) { // 注意
            int mid = (left + right) / 2;
            if (nums[mid] == target) {
              right = mid;
            } else if (nums[mid] < target) {
              left = mid + 1;
            } else if (nums[mid] > target) {
              right = mid; // 注意
            }
          }
          // return left;    //返回>=target的左边界位置 [0,nums.size()]
      
          // 返回第一个target的位置 没有则返回-1;
          {
            if (left == nums.size())
              return -1; //[1,2,2,4]搜索8返回left 4,越界
                         // 类似之前算法的处理方式
            return nums[left] == target ? left : -1;
          }
        }
      
        //<= 写法 完全一致
        int left_bound2(vector<int> nums, int target) {
          if (nums.size() == 0)
            return -1;
          int left = 0;
          int right = nums.size() - 1; // 注意
      
          while (left <= right) { // 注意
            int mid = (left + right) / 2;
            if (nums[mid] == target) {
              right = mid - 1;
            } else if (nums[mid] < target) {
              left = mid + 1;
            } else if (nums[mid] > target) {
              right = mid - 1; // 注意
            }
          }
          // return left; //返回>=target的左边界位置 [0,nums.size()]
      
          // 返回第一个target的位置 没有则返回-1;
          {
            if (left == nums.size())
              return -1; //[1,2,2,4]搜索8返回left 4,越界
                         // 类似之前算法的处理方式
            return nums[left] == target ? left : -1;
          }
        }
      

    **四、寻找右侧边界的二分查找 **

    //所有=target的最后一个位置 > target的第一个位置

    寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:

    int right_bound(int[] nums, int target) {
       if (nums.length == 0) return -1;
       int left = 0, right = nums.length;
    
    while (left < right) {
         int mid = (left + right) / 2;
         if (nums[mid] == target) {
           left = mid + 1; // 注意
         } else if (nums[mid] < target) {
           left = mid + 1;
         } else if (nums[mid] > target) {
           right = mid;
         }
       }
       return left - 1; // 注意
    }
    
    1. 为什么这个算法能够找到右侧边界?

      • 答:类似地,关键点还是这里:
       if (nums[mid] == target) {
           left = mid + 1;     //与模板对应一致
      
      • 当 nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。
    2. 为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

      • 答:首先,while 循环的终止条件是 left == right,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1 好了。

        target = 2

        pos: left mid mid+1 right

        nums: 1 2 2 4

        index: 0 1 2 3 4

      • 至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断

      if (nums[mid] == target) {
           left = mid + 1;
           // 这样想: mid = left - 1
      
      • 因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left - 1]可能是target。
      • 至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。
    3. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

      • 答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:
      while (left < right) {
         // ...
      }
      if (left == 0) return -1;  //这个例子搜索0 就是返回left 0
      return nums[left-1] == target ? (left-1) : -1;
      
    4. 经测试, 两种写法返回值完全一致

        //二分法细节 查找右边界
        //<写法
        int right_bound(vector<int> nums, int target) {
          if (nums.size() == 0)
            return -1;
          int left = 0, right = nums.size();
      
          while (left < right) {
            int mid = (left + right) / 2;
            if (nums[mid] == target) {
              left = mid + 1; // 注意
            } else if (nums[mid] < target) {
              left = mid + 1;
            } else if (nums[mid] > target) {
              right = mid;
            }
          }
          // return left - 1; //返回>=target的右边界位置 [0,nums.size()]
      
          // 返回最后一个target的位置 没有则返回-1;
          {
            if (left == 0)
              return -1; //这个例子搜索0 就是返回left 0
            return nums[left - 1] == target ? (left - 1) : -1;
          }
        }
      
        //<=写法
        int right_bound2(vector<int> nums, int target) {
          if (nums.size() == 0)
            return -1;
          int left = 0, right = nums.size() - 1;
      
          while (left <= right) {
            int mid = (left + right) / 2;
            if (nums[mid] == target) {
              left = mid + 1; // 注意
            } else if (nums[mid] < target) {
              left = mid + 1;
            } else if (nums[mid] > target) {
              right = mid - 1;
            }
          }
          // return left - 1; //返回>=target的右边界位置 [0,nums.size()]
      
          // 返回最后一个target的位置 没有则返回-1;
          {
            if (left == 0)
              return -1; //这个例子搜索0 就是返回left 0
            return nums[left - 1] == target ? (left - 1) : -1;
          }
        }
      

    五、最后总结

    先来梳理一下这些细节差异的因果逻辑:

    1. 第一个,最基本的二分查找算法:

      因为我们初始化 right = nums.length - 1
      所以决定了我们的「搜索区间」是 [left, right]
      所以决定了 while (left <= right)
      同时也决定了 left = mid+1 和 right = mid-1

      因为我们只需找到一个 target 的索引即可
      所以当 nums[mid] == target 时可以立即返回

    2. 第二个,寻找左侧边界的二分查找:

      因为我们初始化 right = nums.length
      所以决定了我们的「搜索区间」是 [left, right)
      所以决定了 while (left < right)
      同时也决定了 left = mid+1 和 right = mid

      因为我们需找到 target 的最左侧索引
      所以当 nums[mid] == target 时不要立即返回
      而要收紧右侧边界以锁定左侧边界

    3. 第三个,寻找右侧边界的二分查找:

      因为我们初始化 right = nums.length
      所以决定了我们的「搜索区间」是 [left, right)
      所以决定了 while (left < right)
      同时也决定了 left = mid+1 和 right = mid

      因为我们需找到 target 的最右侧索引
      所以当 nums[mid] == target 时不要立即返回
      而要收紧左侧边界以锁定右侧边界

      又因为收紧左侧边界时必须 left = mid + 1
      所以最后无论返回 left 还是 right,必须减一

    • 分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。
    • 注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。
    • 如需要搜索左右边界,只要在 nums[mid] == target 时做修改即可。搜索右侧时需要减一。
      转载自详解二分查找算法 https://www.cnblogs.com/kyoner/p/11080078.html
  • 相关阅读:
    colorDialog颜色拾取
    ContextMenuStrip菜单
    C#根据当前时间确定日期范围(本周、本月、本季度、本年度及常见日期方法荟萃
    重设切片上下文
    DomainUpDown 控件
    SQL中使用WITH AS提高性能
    在Reporting Service中使用下拉框提供参数查询
    c# 发射机制
    Silverlight 浏览器外运行及更新判断
    自动化持续集成编译 配置 CruiseControl.Net SVN
  • 原文地址:https://www.cnblogs.com/qianxunslimg/p/15943974.html
Copyright © 2020-2023  润新知