• 动态规划——详解leetcode518 零钱兑换 II


    动态规划 零钱兑换 II

    参考书目:《程序员代码面试指南:IT名企算法与数据结构题目最优解》

    给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

    示例 1:

    输入: amount = 5, coins = [1, 2, 5]
    输出: 4
    解释: 有四种方式可以凑成总金额:
    5=5
    5=2+2+1
    5=2+1+1+1
    5=1+1+1+1+1
    示例 2:

    输入: amount = 3, coins = [2]
    输出: 0
    解释: 只用面额2的硬币不能凑成总金额3。
    示例 3:

    输入: amount = 10, coins = [10]
    输出: 1

    注意:

    你可以假设:

    0 <= amount (总金额) <= 5000
    1 <= coin (硬币面额) <= 5000
    硬币种类不超过 500 种
    结果符合 32 位符号整数

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/coin-change-2
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    1. 暴力递归

    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            return self.process(coins, 0, amount)
        
        def process(self, coins, index, amount):
            res = 0
            if index == len(coins):
                return 1 if amount == 0 else 0
            else:
                i = 0
                while coins[index] * i <= amount:
                    res += self.process(coins, index+1, amount - i*coins[index])
                    i += 1
            return res
    

    暴力递归方法的时间复杂度非常高,并且与 arr 中钱的面值有关,最差情况下为O(amountN

    2. 记忆化搜索

    # 用-1标记是否计算过
    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            coin_num = len(coins)
            counts = [[0 for i in range(amount+1)] for j in range(coin_num+1)] 
            return self.process(coins, 0, amount, counts)
        
        def process(self, coins, index, amount, counts):
            res = 0
            if index == len(coins):
                return 1 if amount == 0 else 0
            else:
                i = 0
                while coins[index]*i <= amount:
                    value = counts[index+1][amount-coins[index]*i]
                    if value != 0:
                        res += 0 if value == -1 else value
                    else:
                    	res += self.process(coins, index+1, amount-coins[index]*i, counts)
                    i += 1
           	counts[index][amount] = -1 if res == 0 else res
        	return res
    

    记忆化搜索方法的时间复杂度为 O(N×amount2)

    # 超时代码;未标记是否计算过。
    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            coin_num = len(coins)
            counts = [[0 for i in range(amount+1)] for j in range(coin_num+1)] 
            return self.process(coins, 0, amount, counts)
        
        def process(self, coins, index, amount, counts):
            res = 0
            if index == len(coins):
                return 1 if amount == 0 else 0
            else:
                i = 0
                while coins[index]*i <= amount:
                    value = counts[index+1][amount-coins[index]*i]
                    if value != 0:
                        res += value
                    else:
                    	res += self.process(coins, index+1, amount-coins[index]*i, counts)
                    i += 1
            counts[index][amount] = res
        	return res
    

    3. 动态规划方法

    时间复杂度为 O(N×amount2

    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            return self.process(coins, amount)
        
        def process(self, coins, amount):
            counts = [[0 for i in range(amount+1)] for j in range(len(coins)+1)]
            for i in range(len(coins)):
                counts[i][0] = 1
            j = 0
            while coins[0]*j <= amount:
                counts[0][coins[0]*j] = 1
                j += 1
            for i in range(1, len(coins)):
                for j in range(1, amount+1):
                    num = 0
                    k = 0
                    while coins[i]*k <= j:
                        num += counts[i-1][j-coins[i]*k] 
                        k += 1
                    counts[i][j] = num
            return counts[len(coins)-1][amount]
            
    

    记忆化搜索的方法说白了就是不关心到达某一个递归过程的路径,只是单纯地对计算过的递归过程进行记录,避免重复的递归过程,而动态规划的方法则是规定好每一个递归过程的计算顺序,依次进行计算,后计算的过程严格依赖前面计算过的过程。

    4. 进一步优化的动态规划算法

    时间复杂度O(N×amount)

    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            return self.process(coins, amount)
        
        def process(self, coins, amount):
            counts = [[0 for i in range(amount+1)] for j in range(len(coins)+1)]
            for i in range(len(coins)):
                counts[i][0] = 1
            j = 0
            while coins[0]*j <= amount:
                counts[0][coins[0]*j] = 1
                j += 1
            for i in range(1, len(coins)):
                for j in range(1, amount+1):
                    counts[i][j] = counts[i-1][j]
                    counts[i][j] += counts[i][j-coins[i]] if j - coins[i] >= 0 else 0 # 简化为dp[i][j]=dp[i-1][j]+dp[i][j-arr[i]]。一下省去了枚举的过程,时间复杂度也减小至O(N×amount)
            return counts[len(coins)-1][amount]
    

    5. 对空间进一步优化

    class Solution(object):
        def change(self, amount, coins):
            """
            :type amount: int
            :type coins: List[int]
            :rtype: int
            """
            if amount == 0:
                return 1
            if not coins or amount < 0:
                return 0
            return self.process(coins, amount)
        
        def process(self, coins, amount):
            counts = [0 for i in range(amount+1)]
            j = 0
            while coins[0]*j <= amount:
                counts[coins[0]*j] = 1
                j += 1
            for i in range(1, len(coins)):
                for j in range(1, amount+1):
                    counts[j] += counts[j-coins[i]] if j - coins[i] >= 0 else 0 # 空间压缩
            return counts[amount]
    

    时间复杂度为O(N×aim)、额外空间复杂度O(aim)的方法。

  • 相关阅读:
    计算中文混合字符串长度(一)
    PHP截取含中文的混合字符串长度的函数
    获取星座的JS函数
    获取生日对应星座的PHP函数
    简单的 jQuery 浮动层随窗口滚动滑动插件实例
    MD5算法实现
    70. Climbing Stairs QuestionEditorial Solution
    167. Two Sum II
    167. Two Sum II
    303. Range Sum Query
  • 原文地址:https://www.cnblogs.com/qiangz/p/13346641.html
Copyright © 2020-2023  润新知