• python常用模块详解


    什么是模块

     常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。但其实import加载的模块分为四个通用类别: 

      1 使用python编写的代码(.py文件)

      2 已被编译为共享库或DLL的C或C++扩展

      3 包好一组模块的包

      4 使用C编写并链接到python解释器的内置模块

    常用模块

    下面列举python的常用模块

    collections模块

    在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

    1.namedtuple: 生成可以使用名字来访问元素内容的tuple

    2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

    3.Counter: 计数器,主要用来计数

    4.OrderedDict: 有序字典

    5.defaultdict: 带有默认值的字典

    namedtuple

    们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

    >>> p = (1, 2)

    但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

    这时,namedtuple就派上了用场:

    1 >>> from collections import namedtuple
    2 >>> Point = namedtuple('Point', ['x', 'y'])
    3 >>> p = Point(1, 2)
    4 >>> p.x
    5 >>> p.y

    似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

    1 #namedtuple('名称', [属性list]):
    2 Circle = namedtuple('Circle', ['x', 'y', 'r'])

    deque双端队列

    使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

    deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

    >>> from collections import deque
    >>> q = deque(['a', 'b', 'c'])
    >>> q.append('x')
    >>> q.appendleft('y')
    >>> q
    deque(['y', 'a', 'b', 'c', 'x'])

    deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

    OrderedDict有序字典

    使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

    如果要保持Key的顺序,可以用OrderedDict

    1 >>> from collections import OrderedDict
    2 >>> d = dict([('a', 1), ('b', 2), ('c', 3)])
    3 >>> d # dict的Key是无序的
    4 {'a': 1, 'c': 3, 'b': 2}
    5 >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    6 >>> od # OrderedDict的Key是有序的
    7 OrderedDict([('a', 1), ('b', 2), ('c', 3)])

    意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

    >>> od = OrderedDict()
    >>> od['z'] = 1
    >>> od['y'] = 2
    >>> od['x'] = 3
    >>> od.keys() # 按照插入的Key的顺序返回
    ['z', 'y', 'x']

    defaultDict

    有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

    即: {'k1': 大于66 'k2': 小于66}
     
     1 values = [11, 22, 33,44,55,66,77,88,99,90]
     2 
     3 my_dict = {}
     4 
     5 for value in  values:
     6     if value>66:
     7         if my_dict.has_key('k1'):
     8             my_dict['k1'].append(value)
     9         else:
    10             my_dict['k1'] = [value]
    11     else:
    12         if my_dict.has_key('k2'):
    13             my_dict['k2'].append(value)
    14         else:
    15             my_dict['k2'] = [value]
    原生字典解决方案
     1 from collections import defaultdict
     2 
     3 values = [11, 22, 33,44,55,66,77,88,99,90]
     4 
     5 my_dict = defaultdict(list)
     6 
     7 for value in  values:
     8     if value>66:
     9         my_dict['k1'].append(value)
    10     else:
    11         my_dict['k2'].append(value)
    default字典解决

    tip:使dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

    1 >>> from collections import defaultdict
    2 >>> dd = defaultdict(lambda: 'N/A')
    3 >>> dd['key1'] = 'abc'
    4 >>> dd['key1'] # key1存在
    5 'abc'
    6 >>> dd['key2'] # key2不存在,返回默认值
    7 'N/A'

    defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值

    >>> from collections import defaultdict
    >>> dd = defaultdict(list)
    >>> dd
    defaultdict(<type 'list'>, {})
    >>> dd['foo']
    []
    >>> dd
    defaultdict(<type 'list'>, {'foo': []})
    >>> dd['bar'].append('quux')
    >>> dd
    defaultdict(<type 'list'>, {'foo': [], 'bar': ['quux']})

    counter

    Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

    c = Counter('abcdeabcdabcaba')
    print c
    输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

    时间模块

    和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。

    1 #常用方法
    2 1.time.sleep(secs)
    3 (线程)推迟指定的时间运行。单位为秒。
    4 2.time.time()
    5 获取当前时间戳

    表示时间的三种方式

    在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

    (1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

    (2)格式化的时间字符串(Format String): ‘1999-12-06’

     1 %y 两位数的年份表示(00-99 2 %Y 四位数的年份表示(000-9999 3 %m 月份(01-12 4 %d 月内中的一天(0-31 5 %H 24小时制小时数(0-23 6 %I 12小时制小时数(01-12 7 %M 分钟数(00=59 8 %S 秒(00-59 9 %a 本地简化星期名称
    10 %A 本地完整星期名称
    11 %b 本地简化的月份名称
    12 %B 本地完整的月份名称
    13 %c 本地相应的日期表示和时间表示
    14 %j 年内的一天(001-36615 %p 本地A.M.或P.M.的等价符
    16 %U 一年中的星期数(00-53)星期天为星期的开始
    17 %w 星期(0-6),星期天为星期的开始
    18 %W 一年中的星期数(00-53)星期一为星期的开始
    19 %x 本地相应的日期表示
    20 %X 本地相应的时间表示
    21 %Z 当前时区的名称
    22 %% %号本身

    (3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)

    索引(Index)属性(Attribute)值(Values)
    0 tm_year(年) 如:2016
    1 tm_mon(月) 1 - 12
    2 tm_mday(日) 1 - 31
    3 tm_hour(时) 0 - 23
    4 tm_min(分) 0 - 59
    5 tm_sec(秒) 0 - 59
    6 tm_wday(weekday) 0 - 6
    7 tm_yday(一年中的第几天) 1 - 366
    8 tm_isdst(是否是夏令时) 默认0

    python中表示时间的几种格式:

     1 #导入时间模块
     2 >>>import time
     3 
     4 #时间戳
     5 >>>time.time()
     6 1500875844.800804
     7 
     8 #时间字符串
     9 >>>time.strftime("%Y-%m-%d %X")
    10 '2017-07-24 13:54:37'
    11 >>>time.strftime("%Y-%m-%d %H-%M-%S")
    12 '2017-07-24 13-55-04'
    13 
    14 #时间元组:localtime将一个时间戳转换为当前时区的struct_time
    15 time.localtime()
    16 time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
    17           tm_hour=13, tm_min=59, tm_sec=37, 
    18                  tm_wday=0, tm_yday=205, tm_isdst=0)

    小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

    几种时间格式的转换

    #时间戳-->结构化时间
    #time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
    #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
    >>>time.gmtime(1500000000)
    time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
    >>>time.localtime(1500000000)
    time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
    
    #结构化时间-->时间戳 
    #time.mktime(结构化时间)
    >>>time_tuple = time.localtime(1500000000)
    >>>time.mktime(time_tuple)
    1500000000.0
    #结构化时间-->字符串时间
    #time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则现实当前时间
    >>>time.strftime("%Y-%m-%d %X")
    '2017-07-24 14:55:36'
    >>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
    '2017-07-14'
    
    #字符串时间-->结构化时间
    #time.strptime(时间字符串,字符串对应格式)
    >>>time.strptime("2017-03-16","%Y-%m-%d")
    time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
    >>>time.strptime("07/24/2017","%m/%d/%Y")
    time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)

    #结构化时间 --> %a %b %d %H:%M:%S %Y串
    #time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
    >>>time.asctime(time.localtime(1500000000))
    'Fri Jul 14 10:40:00 2017'
    >>>time.asctime()
    'Mon Jul 24 15:18:33 2017'
    
    #%a %d %d %H:%M:%S %Y串 --> 结构化时间
    #time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
    >>>time.ctime()
    'Mon Jul 24 15:19:07 2017'
    >>>time.ctime(1500000000)
    'Fri Jul 14 10:40:00 2017' 
    import time
    true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
    time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
    dif_time=time_now-true_time
    struct_time=time.gmtime(dif_time)
    print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
                                           struct_time.tm_mday-1,struct_time.tm_hour,
                                           struct_time.tm_min,struct_time.tm_sec))
    计算时间差

    random模块

     1 >>> import random
     2 #随机小数
     3 >>> random.random()      # 大于0且小于1之间的小数
     4 0.7664338663654585
     5 >>> random.uniform(1,3) #大于1小于3的小数
     6 1.6270147180533838
     7 
     8 #随机整数
     9 >>> random.randint(1,5)  # 大于等于1且小于等于5之间的整数
    10 >>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数
    11 
    12 
    13 #随机选择一个返回
    14 >>> random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
    15 #随机选择多个返回,返回的个数为函数的第二个参数
    16 >>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
    17 [[4, 5], '23']
    18 
    19 
    20 #打乱列表顺序
    21 >>> item=[1,3,5,7,9]
    22 >>> random.shuffle(item) # 打乱次序
    23 >>> item
    24 [5, 1, 3, 7, 9]
    25 >>> random.shuffle(item)
    26 >>> item
    27 [5, 9, 7, 1, 3]

    生成随机验证码

    import random
    
    def v_code():
    
        code = ''
        for i in range(5):
    
            num=random.randint(0,9)
            alf=chr(random.randint(65,90))
            add=random.choice([num,alf])
            code="".join([code,str(add)])
    
        return code
    
    print(v_code())
    生成随机验证码

     sys模块

    sys模块是与python解释器交互的一个接口

    1 sys.argv           命令行参数List,第一个元素是程序本身路径
    2 sys.exit(n)        退出程序,正常退出时exit(0),错误退出sys.exit(1)
    3 sys.version        获取Python解释程序的版本信息
    4 sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
    5 sys.platform       返回操作系统平台名称

    异常处理和status

    1 import sys
    2 try:
    3     sys.exit(1)
    4 except SystemExit as e:
    5     print(e)

    序列化模块

    什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

    比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
    现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
    但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
    你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
    没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
    但是你要怎么把一个字符串转换成字典呢?
    聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
    eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
    BUT!强大的函数有代价。安全性是其最大的缺点。
    想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
    而使用eval就要担这个风险。
    所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
    为什么要序列化

    序列化的目的

    1、以某种存储形式使自定义对象持久化;
    2、将对象从一个地方传递到另一个地方。
    3、使程序更具维护性。
     

    json

    Json模块提供了四个功能:dumps、dump、loads、load

    import json
    dic = {'k1':'v1','k2':'v2','k3':'v3'}
    str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
    print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
    #注意,json转换完的字符串类型的字典中的字符串是由""表示的
    
    dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
    #注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
    print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
    
    
    list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
    str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
    print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
    list_dic2 = json.loads(str_dic)
    print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
    loads和dumps
    import json
    f = open('json_file','w')
    dic = {'k1':'v1','k2':'v2','k3':'v3'}
    json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
    f.close()
    
    f = open('json_file')
    dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
    f.close()
    print(type(dic2),dic2)
    load和dump
    import json
    f = open('file','w')
    json.dump({'国籍':'中国'},f)
    ret = json.dumps({'国籍':'中国'})
    f.write(ret+'
    ')
    json.dump({'国籍':'美国'},f,ensure_ascii=False)
    ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
    f.write(ret+'
    ')
    f.close()
    ensure_ascii关键字参数

    pickle

    用于序列化的两个模块

     

    • json,用于字符串 和 python数据类型间进行转换
    • pickle,用于python特有的类型 和 python的数据类型间进行转换

     

    pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

    import pickle
    dic = {'k1':'v1','k2':'v2','k3':'v3'}
    str_dic = pickle.dumps(dic)
    print(str_dic)  #一串二进制内容
    
    dic2 = pickle.loads(str_dic)
    print(dic2)    #字典
    
    import time
    struct_time  = time.localtime(1000000000)
    print(struct_time)
    f = open('pickle_file','wb')
    pickle.dump(struct_time,f)
    f.close()
    
    f = open('pickle_file','rb')
    struct_time2 = pickle.load(f)
    print(struct_time2.tm_year)

    shelve

    shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
    shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

     1 import shelve
     2 f = shelve.open('shelve_file')
     3 f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'}  #直接对文件句柄操作,就可以存入数据
     4 f.close()
     5 
     6 import shelve
     7 f1 = shelve.open('shelve_file')
     8 existing = f1['key']  #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
     9 f1.close()
    10 print(existing)

    这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

    import shelve
    f = shelve.open('shelve_file', flag='r')
    existing = f['key']
    f.close()
    print(existing)
    shelve只读

    由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

    import shelve
    f1 = shelve.open('shelve_file')
    print(f1['key'])
    f1['key']['new_value'] = 'this was not here before'
    f1.close()
    
    f2 = shelve.open('shelve_file', writeback=True)
    print(f2['key'])
    f2['key']['new_value'] = 'this was not here before'
    f2.close()
    设置writeback

    writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

    re模块

    python正则详解:http://www.cnblogs.com/qflyue/p/8252528.html

    os模块

    python文件操作与os常用命令:http://www.cnblogs.com/qflyue/p/8110862.html

    hashlib、configparser、logging模块

    python之hashlib、configparser、logging模块 http://www.cnblogs.com/qflyue/p/8342581.html

  • 相关阅读:
    android布局
    Windows7 32/64位系统搭建Cocos2d-x及Android交叉编译环境
    第12章 文件管理
    第十章 多处理器和实时调度
    C语言实现多级反馈队列调度算法
    C++实现操作系统调度算法(FSFS,SJF,RR,多级反馈队列算法)
    多级反馈队列调度算法
    第九章 单处理器调度
    第六章 并发:死锁与饥饿
    第七章 内存管理
  • 原文地址:https://www.cnblogs.com/qflyue/p/8259772.html
Copyright © 2020-2023  润新知