• MapReduce统计每个用户的使用总流量


    1、原始数据

    2、使用java程序

      1)新建项目

      2)导包
      hadoop-2.7.3sharehadoopmapreduce

      +hsfs的那些包

      +common

    3、写项目

      1)实体类

    注:属性直接定义为String和 Long定义更方便

    package com.zy.flow;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.Writable;
    
    public class Flow implements Writable{//Writable可序列化的(序列化:把对象变成二进制流   反序列化:把二进制流变成对象)
    //包含 电话 上行流量 下行流量 总流量
    private Text phone; private LongWritable upflow;//上行 private LongWritable downflow;//下行 private LongWritable sumflow;//总流量 //这个对象以后要在集群中传输,所以要可序列化 //序列化反序列化顺序要一致 @Override//反序列化时会调用该方法 public void readFields(DataInput in) throws IOException { phone=new Text(in.readUTF()); upflow=new LongWritable(in.readLong()); downflow=new LongWritable(in.readLong()); sumflow=new LongWritable(in.readLong()); } @Override//序列化时会调用该方法 public void write(DataOutput out) throws IOException { out.writeUTF(phone.toString()); out.writeLong(upflow.get()); out.writeLong(downflow.get()); out.writeLong(sumflow.get()); } public Text getPhone() { return phone; } public void setPhone(Text phone) { this.phone = phone; } public LongWritable getUpflow() { return upflow; } public void setUpflow(LongWritable upflow) { this.upflow = upflow; } public LongWritable getDownflow() { return downflow; } public void setDownflow(LongWritable downflow) { this.downflow = downflow; } public LongWritable getSumflow() { return sumflow; } public void setSumflow(LongWritable sumflow) { this.sumflow = sumflow; } public Flow() { } public Flow(Text phone, LongWritable upflow, LongWritable downflow, LongWritable sumflow) { super(); this.phone = phone; this.upflow = upflow; this.downflow = downflow; this.sumflow = sumflow; } public Flow(LongWritable upflow, LongWritable downflow, LongWritable sumflow) { super(); this.upflow = upflow; this.downflow = downflow; this.sumflow = sumflow; } @Override//toString最后就是reduce中输出值的样式 public String toString() {
        //输出样式
    return upflow+" "+downflow+" "+sumflow; } }

      2)FlowMap类

    package com.zy.flow;
    
    import java.io.IOException;
    
    import javax.security.auth.callback.LanguageCallback;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class FlowMap extends Mapper<LongWritable, Text, Text, Flow>{
    
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Flow>.Context context)
                throws IOException, InterruptedException {
            //输入的值 value
            //切分value 寻找有价值的列
            String[] split = value.toString().split("	");
            int length=split.length;
            //取哪几列split[1] split[length-3] split[length-2]
            String phone=split[1];
            Long upflow=Long.parseLong(split[length-3]);
            Long downflow=Long.parseLong(split[length-2]);
            Long sumflow=upflow+downflow;
            //输出
            context.write(new Text(phone), new Flow(new Text(phone), new LongWritable(upflow), new LongWritable(downflow),new LongWritable(sumflow)));
            //对象里虽然用不到phone但是要给它赋值,不然序列化时会报空指针异常
        }
    }

      3)Part(分区)类

    package com.zy.flow;
    import java.util.HashMap;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Partitioner;
    
    //  map的输出是suffer的输入
    public class Part extends Partitioner<Text, Flow> {//分区 //逻辑自己写 HashMap<String,Integer> map = new HashMap(); public void setMap(){ map.put("135",0); map.put("136", 1); map.put("137",2); map.put("138", 3); map.put("139",4); }
    // 生成的文件 part-00000   part的编号的结尾就是这个int类型的返回值; @Override
    public int getPartition(Text key, Flow value, int arg2) { setMap(); //从输入的数据中获得电话的前三位跟map对比。决定分到哪个区中 String substring = key.toString().substring(0, 3);//例如截取135 return map.get(substring)==null?5:map.get(substring);//根据键取值 键135 取出0 //其他号码分到(编号为5)第6个区中 } //在这个逻辑下partition分了6个区,所以以后要指定6个reducetask }

      4)FlowReduce类

    package com.zy.flow;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class FlowReduce extends Reducer<Text, Flow, Text, Flow>{
        @Override
        protected void reduce(Text key, Iterable<Flow> value, Reducer<Text, Flow, Text, Flow>.Context context)
                throws IOException, InterruptedException {
            //累加
            long allup=0;
            long alldown=0;
            for (Flow flow : value) {
                allup+=Long.parseLong(flow.getUpflow().toString());//同一个电话的上行流量累加
                alldown+=Long.parseLong(flow.getDownflow().toString());//同一个电话的下行流量累加
                
            }
            long allsum=allup+alldown;
            context.write(key, new Flow(new Text(key), new LongWritable(allup),  new LongWritable(alldown),  new LongWritable(allsum)));
        }
    
    }

      5)FlowApp类

    package com.zy.flow;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class FlowApp {
    
        public static void main(String[] args) throws Exception {
            //创建配置对象
            Configuration configuration = new Configuration();
            //得到job实例
            Job job = Job.getInstance(configuration);
            //指定job运行类
            job.setJarByClass(FlowApp.class);
            
            //指定job中的mapper
            job.setMapperClass(FlowMap.class);
            //指定mapper中的输出键和值类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Flow.class);
            
            //指定job中的reducer
            job.setReducerClass(FlowReduce.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Flow.class);
            
            
            
            
            //-----
            //指定Partitioner使用的类
            job.setPartitionerClass(Part.class);
            //指定ReduceTask数量
            job.setNumReduceTasks(6);
            //-----
    
    
            //指定输入文件
            FileInputFormat.setInputPaths(job, new Path(args[0]));//运行时填入参数
            //指定输出文件
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            //提交作业
            job.waitForCompletion(true);
            
        }
    
    }

    4、运行

      1)打包

      2)上传到linux

      3)运行

  • 相关阅读:
    选择排序
    unity面试准备
    标识位
    table.insert(tableName, v)
    使用bmfont制作字体
    长按tools Icon 弹出Tips音效
    钓鱼功能
    jQuery鼠标移到小图显示大图效果
    ThinkPHP3.2.3中如何显示二级栏目
    ThinkPHP3.2.2自定义success及error跳转页面
  • 原文地址:https://www.cnblogs.com/qfdy123/p/11246635.html
Copyright © 2020-2023  润新知