problem description http://acm.hdu.edu.cn/showproblem.php?pid=1030
#include <cstdio>
#include <cmath>
#include <algorithm>
int calPathLength(int x, int y) {
//path length from 1 (1st line, lower) to a number in ith line is only differ by -1,
// 1 to 17 - 25 (5th line) is 2*(5-1)+(0 or -1)
//path length from 3 (3rd line, upper) to a number in ith line (except first, last one)
// is only differ by 1, 3 to 18 - 24 (5th line) is 2*(5-2)+(0 or 1)
// if y is out of valid triangle starting from x, then plus distance with the border
// left_border=cx, right_border=cx+(ry-rx)*2
// if on the left, plus left_border-cy,
// if on the right, plus cy-right_border,
// if in the valid range, plus by 0, 1, or -1, namely (cy&1)-(cx&1)
int rx,ry,cx,cy, tmp,res; // x is the cx-th number in row rx
if(x>y) std::swap(x,y);
rx=sqrt(x-1), ry=sqrt(y-1);
cx=x-rx*rx;
cy=y-ry*ry;
res=(ry-rx)<<1;
if((tmp=cx-cy)>=0) return res+tmp;
if((tmp=cy-cx-res)>=0) return res+tmp;
else return res+(cy&1)-(cx&1);
}
int main() {
//freopen("input.txt","r",stdin);
int x,y;
while(scanf("%d%d",&x,&y)!=EOF) {
printf("%d
",calPathLength(x,y));
}
return 0;
}
thanks to http://www.acmerblog.com/hdu-1030-delta-wave-1282.html
below is an excerpt with a little modification.
求三角形内两点的最短路径,很容易证明最短的路径就是两点在三个方向的距离之和。
#include <cstdio>
#include <cmath>
int main() {
int m,n,ai,aj,bi,bj,ak,bk;
while (scanf("%d%d",&m,&n)!=EOF) {
ai = sqrt(m-1);
bi = sqrt(n-1);
aj = (m-ai*ai-1)>>1;
bj = (n-bi*bi-1)>>1;
ak = ((ai+1)*(ai+1)-m)>>1;
bk = ((bi+1)*(bi+1)-n)>>1;
printf("%d
",abs(ai-bi)+abs(aj-bj)+abs(ak-bk));
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。// p.s. If in any way improment can be achieved, better performance or whatever, it will be well-appreciated to let me know, thanks in advance.