题意: 先输入一个整数,后在输入n个整数(保证)输入的序列为有序序列(递增或递减),最后输入一个整数m,问该序列是否存在m,若存在则输出YES,否则输出NO
简言之就是在一个有序数组里面查找是否存在m
二分如下 :
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define Mem0(x) memset(x,0,sizeof(x))
#define Mem1(x) memset(x,-1,sizeof(x))
#define MemX(x) memset(x,0x3f,sizeof(x));
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f;
const double eps=1e-12;
int m,a[1010],flag=0;
void binsearch1(int a[],int start,int end) //递归
{
int mid=(start+end)/2;
if (a[mid]==m){
flag=1;
printf("YES
");
}
else if (m>a[mid])
binsearch1(a,mid+1,end);
else if (m<a[mid])
binsearch1(a,start,mid-1);
}
void binsearch2(int a[],int start,int end)
{
while (start<=end&&!flag){
int mid=(start+end)/2;
if (a[mid]>m)
end=mid-1;
else if(a[mid]<m)
start=mid+1;
else{
printf("YES
");
flag=1;
}
}
}
int main()
{
int n;
cin>>n;
for (int i=0;i<n;i++)
cin>>a[i];
cin>>m;
binsearch1(a,0,n-1); //递归版
binsearch2(a,0,n-1); //while循环版
if (flag==0)
cout<<"NO";
return 0;
}
二分查找有有点也有缺陷,优点:大大提高了查找的效率, 缺陷:只能查钊单调递增的序列
假若要查找一个抛物线的最值的时候,这里是二分法是不适用的,这里适用三分。
HDU 2899
Problem Description Now, here is a fuction: F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100) Can you find the minimum value when x is between 0 and 100. Input The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has only one real numbers Y.(0 < Y <1e10) Output Just the minimum value (accurate up to 4 decimal places),when x is between 0 and 100. Sample Input 2 100 200 Sample Output -74.4291 -178.8534 Author Redow
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cstdlib> #include<cmath> #include<algorithm> #include<vector> #include<queue> #include<stack> #include<set> #define Max(a,b) ((a)>(b)?(a):(b)) #define Min(a,b) ((a)<(b)?(a):(b)) #define Swap(a,b,t) t=a,a=b,b=t #define Mem0(x) memset(x,0,sizeof(x)) #define Mem1(x) memset(x,-1,sizeof(x)) #define MemX(x) memset(x,0x3f,sizeof(x)) using namespace std; typedef long long ll; const int inf=0x3f3f3f; const double eps=1e-6; // F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100) int y; double solve(double x) { return 6*pow(x,7)+8*pow(x,6)+7*pow(x,3)+5*pow(x,2)-y*x; } int main() { int t; cin>>t; while (t--){ scanf("%d.%s",&num,&str); cin>>y; double l=0.0,r=100.0; while (r-l>=eps){ double mid=(l+r)/2; double mmid=(mid+r)/2; if(solve(mid)<solve(mmid)){ r=mmid; } else l=mid; } printf("%.4lf ",solve(l)); } return 0; }