• cv2处理图片的模板


    from PIL import Image
    from pytesseract import *
    from fnmatch import fnmatch
    from queue import Queue
    import cv2
    import time
    
    import os
    
    
    
    
    
    def clear_border(img,img_name):
      '''去除边框
      '''
    
      filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
      h, w = img.shape[:2]
      for y in range(0, w):
        for x in range(0, h):
          # if y ==0 or y == w -1 or y == w - 2:
          if y < 4 or y > w -4:
            img[x, y] = 255
          # if x == 0 or x == h - 1 or x == h - 2:
          if x < 4 or x > h - 4:
            img[x, y] = 255
    
      cv2.imwrite(filename,img)
      return img
    
    
    def interference_line(img, img_name):
      '''
      干扰线降噪
      '''
    
      filename =  './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
      h, w = img.shape[:2]
      # !!!opencv矩阵点是反的
      # img[1,2] 1:图片的高度,2:图片的宽度
      for y in range(1, w - 1):
        for x in range(1, h - 1):
          count = 0
          if img[x, y - 1] > 245:
            count = count + 1
          if img[x, y + 1] > 245:
            count = count + 1
          if img[x - 1, y] > 245:
            count = count + 1
          if img[x + 1, y] > 245:
            count = count + 1
          if count > 3:
            img[x, y] = 255
      cv2.imwrite(filename,img)
      return img
    
    def interference_point(img,img_name, x = 0, y = 0):
        """点降噪
        9邻域框,以当前点为中心的田字框,黑点个数
        :param x:
        :param y:
        :return:
        """
        filename =  './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
        # todo 判断图片的长宽度下限
        cur_pixel = img[x,y]# 当前像素点的值
        height,width = img.shape[:2]
    
        for y in range(0, width - 1):
          for x in range(0, height - 1):
            if y == 0:  # 第一行
                if x == 0:  # 左上顶点,4邻域
                    # 中心点旁边3个点
                    sum = int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x + 1, y]) 
                          + int(img[x + 1, y + 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右上顶点
                    sum = int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x - 1, y]) 
                          + int(img[x - 1, y + 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                else:  # 最上非顶点,6邻域
                    sum = int(img[x - 1, y]) 
                          + int(img[x - 1, y + 1]) 
                          + int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x + 1, y]) 
                          + int(img[x + 1, y + 1])
                    if sum <= 3 * 245:
                      img[x, y] = 0
            elif y == width - 1:  # 最下面一行
                if x == 0:  # 左下顶点
                    # 中心点旁边3个点
                    sum = int(cur_pixel) 
                          + int(img[x + 1, y]) 
                          + int(img[x + 1, y - 1]) 
                          + int(img[x, y - 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右下顶点
                    sum = int(cur_pixel) 
                          + int(img[x, y - 1]) 
                          + int(img[x - 1, y]) 
                          + int(img[x - 1, y - 1])
    
                    if sum <= 2 * 245:
                      img[x, y] = 0
                else:  # 最下非顶点,6邻域
                    sum = int(cur_pixel) 
                          + int(img[x - 1, y]) 
                          + int(img[x + 1, y]) 
                          + int(img[x, y - 1]) 
                          + int(img[x - 1, y - 1]) 
                          + int(img[x + 1, y - 1])
                    if sum <= 3 * 245:
                      img[x, y] = 0
            else:  # y不在边界
                if x == 0:  # 左边非顶点
                    sum = int(img[x, y - 1]) 
                          + int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x + 1, y - 1]) 
                          + int(img[x + 1, y]) 
                          + int(img[x + 1, y + 1])
    
                    if sum <= 3 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右边非顶点
                    sum = int(img[x, y - 1]) 
                          + int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x - 1, y - 1]) 
                          + int(img[x - 1, y]) 
                          + int(img[x - 1, y + 1])
    
                    if sum <= 3 * 245:
                      img[x, y] = 0
                else:  # 具备9领域条件的
                    sum = int(img[x - 1, y - 1]) 
                          + int(img[x - 1, y]) 
                          + int(img[x - 1, y + 1]) 
                          + int(img[x, y - 1]) 
                          + int(cur_pixel) 
                          + int(img[x, y + 1]) 
                          + int(img[x + 1, y - 1]) 
                          + int(img[x + 1, y]) 
                          + int(img[x + 1, y + 1])
                    if sum <= 4 * 245:
                      img[x, y] = 0
        cv2.imwrite(filename,img)
        return img
    
    def _get_dynamic_binary_image(filedir, img_name):
      '''
      自适应阀值二值化
      '''
    
      filename =   './out_img/' + img_name.split('.')[0] + '-binary.jpg'
      img_name = filedir + '/' + img_name
      print('.....' + img_name)
      im = cv2.imread(img_name)
      im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
    
      th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
      cv2.imwrite(filename,th1)
      return th1
    
    def _get_static_binary_image(img, threshold = 140):
      '''
      手动二值化
      '''
    
      img = Image.open(img)
      img = img.convert('L')
      pixdata = img.load()
      w, h = img.size
      for y in range(h):
        for x in range(w):
          if pixdata[x, y] < threshold:
            pixdata[x, y] = 0
          else:
            pixdata[x, y] = 255
    
      return img
    
    
    def cfs(im,x_fd,y_fd):
      '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
      '''
    
      # print('**********')
    
      xaxis=[]
      yaxis=[]
      visited =set()
      q = Queue()
      q.put((x_fd, y_fd))
      visited.add((x_fd, y_fd))
      offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
    
      while not q.empty():
          x,y=q.get()
    
          for xoffset,yoffset in offsets:
              x_neighbor,y_neighbor = x+xoffset,y+yoffset
    
              if (x_neighbor,y_neighbor) in (visited):
                  continue  # 已经访问过了
    
              visited.add((x_neighbor, y_neighbor))
    
              try:
                  if im[x_neighbor, y_neighbor] == 0:
                      xaxis.append(x_neighbor)
                      yaxis.append(y_neighbor)
                      q.put((x_neighbor,y_neighbor))
    
              except IndexError:
                  pass
      # print(xaxis)
      if (len(xaxis) == 0 | len(yaxis) == 0):
        xmax = x_fd + 1
        xmin = x_fd
        ymax = y_fd + 1
        ymin = y_fd
    
      else:
        xmax = max(xaxis)
        xmin = min(xaxis)
        ymax = max(yaxis)
        ymin = min(yaxis)
        #ymin,ymax=sort(yaxis)
    
      return ymax,ymin,xmax,xmin
    
    def detectFgPix(im,xmax):
      '''搜索区块起点
      '''
    
      h,w = im.shape[:2]
      for y_fd in range(xmax+1,w):
          for x_fd in range(h):
              if im[x_fd,y_fd] == 0:
                  return x_fd,y_fd
    
    def CFS(im):
      '''切割字符位置
      '''
    
      zoneL=[]#各区块长度L列表
      zoneWB=[]#各区块的X轴[起始,终点]列表
      zoneHB=[]#各区块的Y轴[起始,终点]列表
    
      xmax=0#上一区块结束黑点横坐标,这里是初始化
      for i in range(10):
    
          try:
              x_fd,y_fd = detectFgPix(im,xmax)
              # print(y_fd,x_fd)
              xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
              L = xmax - xmin
              H = ymax - ymin
              zoneL.append(L)
              zoneWB.append([xmin,xmax])
              zoneHB.append([ymin,ymax])
    
          except TypeError:
              return zoneL,zoneWB,zoneHB
    
      return zoneL,zoneWB,zoneHB
    
    
    def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
      filename =  './out_img/' + img.split('.')[0]
      # 识别出的字符个数
      im_number = len(im_position[1])
      # 切割字符
      for i in range(im_number):
        im_start_X = im_position[1][i][0] - xoffset
        im_end_X = im_position[1][i][1] + xoffset
        im_start_Y = im_position[2][i][0] - yoffset
        im_end_Y = im_position[2][i][1] + yoffset
        cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
        cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)
    
    
    
    def main():
      filedir = './easy_img'
    
      for file in os.listdir(filedir):
        if fnmatch(file, '*.png'):
          img_name = file
    
          # 自适应阈值二值化
          im = _get_dynamic_binary_image(filedir, img_name)
    
          # 去除边框
          im = clear_border(im,img_name)
    
          # 对图片进行干扰线降噪
          im = interference_line(im,img_name)
    
          # 对图片进行点降噪
          im = interference_point(im,img_name)
    
          # 切割的位置
          im_position = CFS(im)
    
          maxL = max(im_position[0])
          minL = min(im_position[0])
    
          # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
          if(maxL > minL + minL * 0.7):
            maxL_index = im_position[0].index(maxL)
            minL_index = im_position[0].index(minL)
            # 设置字符的宽度
            im_position[0][maxL_index] = maxL // 2
            im_position[0].insert(maxL_index + 1, maxL // 2)
            # 设置字符X轴[起始,终点]位置
            im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
            im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
            # 设置字符的Y轴[起始,终点]位置
            im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
    
          # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
          cutting_img(im,im_position,img_name,1,1)
    
          # 识别验证码
          cutting_img_num = 0
          for file in os.listdir('./out_img'):
            try:
                print(file)
                a= Image.open(f'./out_img/{file}')
                text = image_to_string(a)
                print('识别内容',text)
                print('-'*300)
            except:
                pass
    if __name__ == '__main__':
      main()
    
  • 相关阅读:
    Perfect ScrollBar插件使用方法
    分享WEBAPP利用纯HTML5实现拨打电话,打开相册,打开摄像头源码
    一周心得
    19赵亮龙07杨康
    李娜跟姜山
    一周心得
    对结对编程的个人理解
    周心得和总结
    关于IT行业抄袭和借鉴
    第三周总结
  • 原文地址:https://www.cnblogs.com/pythonywy/p/13294260.html
Copyright © 2020-2023  润新知