• keras自定义网络层


    在深度学习领域,Keras是一个高度封装的库并被广泛应用,可以通过调用其内置网络模块(各种网络层)实现针对性的模型结构;当所需要的网络层功能不被包含时,则需要通过自定义网络层或模型实现。

    如何在keras框架下自定义层,基本“套路”如下。

    一般地,keras中的网络层是一个类,所以自定义层即编写一个类,更为重要的是这个类(即自定义层)需要继承Layer父类,而且需要实现以下四种方法:

    1. __init __ (self, output_dim, **kwargs)

    这个方法是用来初始化并自定义自定义层所需的属性,比如output_dim;
    此外,该方法需要执行super().__init __(**kwargs),这行代码是执行Layer类中的初始化函数;
    当执行上述代码就没有必要去管input_shape,weights,trainable等关键字参数,因为父类(Layer)的初始化函数实现了它们与layer实例的绑定。

    1. build(self, input_shape)

    这个方法是用来创建层的权重;
    在该方法中,根据之前的继承,通过Layer类的add_weight方法来自定义并添加一个权重矩阵,这个方法需要input_shape参数;
    该方法必须设self.built = True,目的是为了保证这个层的权重定义函数build被执行过了;
    在built函数中,需要说明这个权重各方面的属性,比如shape、初始化方式以及可训练性等信息。

    1. call(self, x)

    这个方法是用来编写层的功能逻辑;
    在该方法中,需要关注传入call的第一个参数:输入张量x;x只能是一种形式变量,不能是具体的变量,即它不能被定义;
    这个call函数就是该层的计算逻辑,当创建好这个层实例后,该实例可以执行call函数;
    可见,这个层的核心应该是一段符号式的输入张量到输出张量的计算过程。

    1. compute_output_shape(self, input_shape)

    这个方法是用来保证输出shape是正确的;
    这里重写compute_output_shape方法去覆盖父类中的同名方法,来保证输出的shape符合实际;
    父类Layer中的compute_output_shape方法直接返回的是input_shape这明显是不对的,所以需要重写该方法。

    示例

    结合官方文档的例子,给出如下一个自定义层的代码:

    使用自定义层,就如同使用keras内置网络层一样,如下图所示:(另外,本例使用kears内置的激活函数层ReLU承接自定义层的输出,从而避免将激活函数的功能加入到自定义层中)

    作者: python之家

    出处: http://www.cnblogs.com/pythonfl/

    本文版权归作者和博客园共有,转载时请标明本文出处;如对本文有疑问,欢迎邮件15256636585@qq.com联系;如发现文中内容侵犯到您的权利,请联系作者予以处理。

  • 相关阅读:
    react native mapbox MarkView只显示一个子组件问题
    react native mapbox 截图压缩(@react-native-mapbox-glmaps)
    @react-native-mapbox-gl/maps语言插件汉化不完善问题
    SQLSERVER优化
    springboot+react整合
    sqlserver求小数取位
    C#中Math.Round() 的真实含义
    Java Nio学习总结(一)
    Linq去重(自定义字段)
    WPF学习记录(一):布局
  • 原文地址:https://www.cnblogs.com/pythonfl/p/14406784.html
Copyright © 2020-2023  润新知