• 吴恩达机器学习课程笔记章节一绪论


    绪论:初识机器学习

    定义:Arthur Samuel(1959).赋予计算机在无需对其编程的情况下能够自主学习的能力的研究。。。Tom Mitchell(1998).计算机程序从经验E中学习,解决某一任务T,进行某一性能度量P,通过P测定在T上的表现因经验E而提高。。。

    算法:主要的两类是监督式学习(教会计算机做某件事)和无监督式学习(让计算机自己学习做某件事),此外还有强化学习和推荐系统。

    监督式学习(SL):给算法一组预测结果的数据集(对每一个样本,清楚告知所谓的正确答案),算法的任务就是正确找到不同输入情况下对应的预测结果。它的算法有隐马尔可夫模型,决策树,最大熵模型,支持向量机,条件随机场等。

    SL的例子:回归问题,比如房价预测问题,用来预测连续的数值输出;分类问题,比如预测肺癌是良性或是恶性问题,预测一个离散值输出。

    学习算法不仅能处理三到五个特征,还能处理无穷多个特征,以支持向量机算法为例,它用到了一个数学上的方法来解决这个问题。

    无监督式学习(UL):给算法一组数据集(有相同标签或者没有标签),算法找到其中的某种结构,对结果进行聚类,各属于哪一个簇。算法有:主成分分析,等距映射,局部线性嵌入方法等。

    UL的例子:最典型的例子就是聚类问题。。谷歌新闻,用来搜索成千上万条新闻,自动将其进行分簇,有关同一主题的新闻。

    无监督学习算法或聚类算法的应用:新闻分类,管理计算机协同工作,基因组分类,社交网络分析,市场用户分割,天文数据分析等。

    鸡尾酒会算法代码:

    [W, s, v] = svd((repmat)(sum(x.*x, 1), size(x, 1).*x)*x')
  • 相关阅读:
    LeetCode之移除元素
    有被开心到hh(日常)
    交换排序
    插入排序
    顺序查找&折半查找
    C++之引用
    MySQL学习笔记
    C/C++程序编译过程
    计算机面试知识整合(更新中...)
    MFC之编辑框
  • 原文地址:https://www.cnblogs.com/py-fwg/p/9966249.html
Copyright © 2020-2023  润新知