• [tensorflow] 入门day1-数据整理与展示


    tensorflow真是一个我绕不开的坑(苍天饶过谁.jpg)

    其实tensorflow1和2的差别挺大的,暂时从1入坑,2的话之后简单过一下。

    tf2中更改的函数(供参考):https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0

    本文仅记录我的踩坑历程。

    参考文献:https://www.datacamp.com/community/tutorials/tensorflow-tutorial

    数据来源:https://btsd.ethz.ch/shareddata/


    基础知识部分另外编写,这里只记录操作和结果。

    import skimage
    import tensorflow as tf
    from skimage import io # [MUST] for skimage.io.imread
    import os
    import matplotlib.pyplot as plt # draw distribution graph
    from skimage import transform
    from skimage.color import rgb2gray # convert img to grayscale
    import numpy as np
    
    def first_try():
        # initialize constant
        x1 = tf.constant([1,2,3,4])
        x2 = tf.constant([5,6,7,8])
        # multiply
        result = tf.multiply(x1, x2)
        # only return a tensor, not real-value
        # that means: tf does not calculate. only deprive a graph
        print(result) # Tensor("Mul:0", shape=(4,), dtype=int32)
        # run result and print. 'with' will close automatically
        #sess = tf.Session()
        #print(sess.run(result))
        #sess.close()
        with tf.Session() as sess:
            output = sess.run(result)
            print(output)
    
    def load_data(data_dir):
        dirs = [d for d in os.listdir(data_dir)
                if os.path.isdir(os.path.join(data_dir, d))]
        labels = []
        images = []
        # each type of sign
        for d in dirs:
            # .ppm 's file name
            label_dir = os.path.join(data_dir, d)
            # real path of .ppm
            file_names = [os.path.join(label_dir, f)
                          for f in os.listdir(label_dir)
                          if f.endswith(".ppm")]
            for f in file_names:
                # load image
                images.append(skimage.io.imread(f))
                labels.append(int(d))
        return images, labels
    
    def random_show(images, name, cmap=None):
        for i in range(len(name)):
            plt.subplot(1, len(name), i+1)
            plt.axis('off')
            # add cmap for gray-scaled pic, which set cmap='gray'
            # or u'll get wrong color
            plt.imshow(images[name[i]], cmap)
            plt.subplots_adjust(wspace=0.5)
            print("shape: {0}, min: {1}, max: {2}".format(images[name[i]].shape,
                                                          images[name[i]].min(),
                                                          images[name[i]].max()))
        plt.show()
    
    
    def show_each_label_pic(labels):
        uniq_labels = set(labels)
        # initialize the figure
        plt.figure(figsize=(15, 15))
        i = 1
        for label in uniq_labels:
            # pick the 1st image for each label
            image = images[labels.index(label)]
            # 8X8, ith
            plt.subplot(8, 8, i)
            plt.axis('off')
            plt.title("Label {0} ({1})".format(label, labels.count(label)))
            i += 1
            plt.imshow(image) # plot single picture
        plt.show()
    
    def transform_img(images, rows, cols):
        return [transform.resize(image, (rows, cols)) for image in images]
    
    def to_gray(images):
        # need array
        return rgb2gray(np.array(images))
    
    if __name__=="__main__":
        ROOT_PATH = r"G:/share/testTF"
        train_data_dir = ROOT_PATH + "/Training"
        images, labels = load_data(train_data_dir)
        #print(len(set(labels))) # 62. coz 62 type of traffic signs
        #print(len(images)) # 4575
        #plt.hist(labels, 63) # draw a bar-graph.
        #plt.show()
        #random_show(images, [300, 2250, 3650, 4000])
        #print(type(images[0])) # <class 'numpy.ndarray'>
        #show_each_label_pic(labels)
        images28 = transform_img(images, 28, 28)
        #random_show(images28, [300, 2250, 3650, 4000])
        gray_images28 = to_gray(images28)
        random_show(gray_images28, [300, 2250, 3650, 4000], cmap="gray")

    图像:

    条形图:

    随机查看的四个图:

    统计一下每个label有多少个图:

     

    而且这个resize之后数据其实进行了归一化,进到(0,1)了

    灰度图怎么样:这里转化成灰度图是因为作者说,当前问题中,颜色在分类时不起作用。这一点我随后会再验证。

  • 相关阅读:
    程序员必须知道的几个Git代码托管平台
    PHP扩展迁移为PHP7扩展兼容性问题记录
    PHP 7 来了,PHP 6 去哪儿了?
    十步轻松搞定IIS+PHP环境搭建
    .Net Discovery系列之十二-深入理解平台机制与性能影响(下)
    .Net Discovery系列之十一-深入理解平台机制与性能影响 (中)
    .Net Discovery系列之十-深入理解平台机制与性能影响(上)
    .Net Discovery 系列之七--深入理解.Net垃圾收集机制(拾贝篇)
    .Net Discovery 系列之六--深入浅出.Net实时编译机制(下)
    协程Coroutine
  • 原文地址:https://www.cnblogs.com/pxy7896/p/11912538.html
Copyright © 2020-2023  润新知