• BP网络中的反向传播


    本文的主要参考:How the backpropagation algorithm works

    下面是BP网络的参数结构示意图

    首先定义第l层网络第j个神经元的输出(activation)

    为了表示简便,令

    则有alj=σ(zlj),其中σ是激活函数

    定义网络的cost function,其中的n是训练样本的个数。

    下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数。

    显然,当输入已知时,cost function只是权值w和偏置项b的函数。这里为了方便推倒,首先计算出∂C/∂zlj,令

    由于alj=σ(zlj),所以显然有

    式中的L表示最后一层网络,即输出层。如果只考虑一个训练样本,则cost function可表示为

    如果将输出层的所有输出看成一个列向量,则δjL可以写成下式,Θ表示向量的点乘

    下面最关键的问题来了,如何同过δl+1求取δl。这里就用到了∂C/∂zlj这一重要的中间表达,推倒过程如下

    因此,最终有

    写成向量的形式为

    利用与上面类似的推倒,可以得到

     

    将上面重要的公式用矩阵乘法形式再表达一遍

     

    式中Σ'(zL)是主对角线上的元素为σ'(zLj)的对角矩阵。求取了cost function相对于权重wij和偏置项bij的导数之后,便可以使用一些基于梯度的优化算法对网络的权值进行更新。下面是一个2输入2输出的一个BP网络的代码示例,实现的是对输入的每个元素进行逻辑取反操作。

      1 import numpy as np
      2 
      3 def tanh(x):
      4     return np.tanh(x)
      5 
      6 def tanh_prime(x):
      7     x = np.tanh(x)
      8     return 1.0 - x ** 2
      9 
     10 class Network(object):
     11 
     12     def __init__(self, sizes):
     13         self.num_layers = len(sizes)
     14         self.sizes = sizes
     15         # self.biases is a column vector
     16         # self.weights' structure is the same as in the book: http://neuralnetworksanddeeplearning.com/chap2.html
     17         self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
     18         self.weights = [np.random.randn(y, x)
     19                         for x, y in zip(sizes[:-1], sizes[1:])]
     20 
     21     def feedforward(self, a):
     22         """Return the output of the network if "a" is input."""
     23         for b, w in zip(self.biases, self.weights):
     24             a = sigmoid(np.dot(w, a) + b)
     25         return a
     26 
     27     def update_mini_batch(self, mini_batch, learning_rate = 0.2):
     28         """Update the network's weights and biases by applying
     29         gradient descent using backpropagation to a single mini batch.
     30         The "mini_batch" is a list of tuples "(x, y)"."""
     31         nabla_b = [np.zeros(b.shape) for b in self.biases]
     32         nabla_w = [np.zeros(w.shape) for w in self.weights]
     33         
     34         # delta_nabla_b is dC/db, delta_nabla_w is dC/dw
     35         for x, y in mini_batch:
     36             delta_nabla_b, delta_nabla_w = self.backprop(x, y)
     37             nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
     38             nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
     39         self.weights = [w - (learning_rate/len(mini_batch)) * nw
     40                         for w, nw in zip(self.weights, nabla_w)]
     41         self.biases = [b - (learning_rate/len(mini_batch)) * nb
     42                        for b, nb in zip(self.biases, nabla_b)]
     43 
     44     def backprop(self, x, y):
     45         """Return a tuple ``(nabla_b, nabla_w)`` representing the
     46         gradient for the cost function C_x.  ``nabla_b`` and
     47         ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
     48         to ``self.biases`` and ``self.weights``."""
     49         nabla_b = [np.zeros(b.shape) for b in self.biases]
     50         nabla_w = [np.zeros(w.shape) for w in self.weights]
     51         
     52         # feedforward
     53         activation = x
     54         activations = [x]   # list to store all the activations, layer by layer
     55         zs = []             # list to store all the z vectors, layer by layer
     56         
     57         # After this loop, activations = [a0, a1, ..., aL], zs = [z1, z2, ..., zL]
     58         for b, w in zip(self.biases, self.weights):
     59             z = np.dot(w, activation) + b
     60             zs.append(z)
     61             activation = sigmoid(z)
     62             activations.append(activation)
     63         
     64         # backward pass
     65         # delta = deltaL .* sigma'(zL)
     66         delta = self.cost_derivative(activations[-1], y) * 
     67                 sigmoid_prime(zs[-1])
     68         
     69         # dC/dbL = delta
     70         # dC/dwL = deltaL * a(L-1)^T
     71         nabla_b[-1] = delta
     72         nabla_w[-1] = np.dot(delta, activations[-2].transpose())
     73 
     74         '''Note that the variable l in the loop below is used a little
     75         differently to the notation in Chapter 2 of the book. Here,
     76         l = 1 means the last layer of neurons, l = 2 is the
     77         second-last layer, and so on. It's a renumbering of the
     78         scheme in the book, used here to take advantage of the fact
     79         that Python can use negative indices in lists.'''
     80         # z = z(L-l+1), here, l start from 2, end with self.num_layers-1, namely, L-1
     81         # delta = delta(L-l+1) = w(L-l+2)^T * delta(L-l+2) .* z(L-l+1)
     82         # nabla_b[L-l+1] = delta(L-l+1)
     83         # nabla_w[L-l+1] = delta(L-l+1) * a(L-l)^T
     84         for l in xrange(2, self.num_layers):
     85             z = zs[-l]
     86             sp = sigmoid_prime(z)
     87             delta = np.dot(self.weights[-l + 1].transpose(), delta) * sp
     88             nabla_b[-l] = delta
     89             nabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())
     90         return (nabla_b, nabla_w)
     91 
     92     def evaluate(self, test_data):
     93         """Return the number of test inputs for which the neural
     94         network outputs the correct result. Note that the neural
     95         network's output is assumed to be the index of whichever
     96         neuron in the final layer has the highest activation."""
     97         test_results = self.feedforward(test_data)
     98         return test_results
     99 
    100     def cost_derivative(self, output_activations, y):
    101         return (output_activations - y)
    102 
    103 #### Miscellaneous functions
    104 def sigmoid(z):
    105     return 1.0/(1.0 + np.exp(-z))
    106 
    107 # derivative of the sigmoid function
    108 def sigmoid_prime(z):
    109     return sigmoid(z) * (1 - sigmoid(z))
    110 
    111 if __name__ == '__main__':
    112 
    113     nn = Network([2, 2, 2])
    114 
    115     X = np.array([[0, 0],
    116                   [0, 1],
    117                   [1, 0],
    118                   [1, 1]])
    119 
    120     y = np.array([[1, 1],
    121                   [1, 0],
    122                   [0, 1],
    123                   [0, 0]])
    124     
    125     for k in range(40000):
    126         if k % 10000 == 0:
    127             print 'epochs:', k
    128         # Randomly select a sample.
    129         i = np.random.randint(X.shape[0])
    130         nn.update_mini_batch(zip([np.atleast_2d(X[i]).T], [np.atleast_2d(y[i]).T]))
    131 
    132     for e in X:
    133         print(e, nn.evaluate(np.atleast_2d(e).T))
    View Code

    运行结果

    epochs: 0
    epochs: 10000
    epochs: 20000
    epochs: 30000
    (array([0, 0]), array([[ 0.98389328],
           [ 0.97490859]]))
    (array([0, 1]), array([[ 0.97694707],
           [ 0.01646559]]))
    (array([1, 0]), array([[ 0.03149928],
           [ 0.97737158]]))
    (array([1, 1]), array([[ 0.01347963],
           [ 0.02383405]]))
  • 相关阅读:
    【Prince2科普】衡量绩效的六大要素
    项目组合管理、项目集管理、项目管理和组织级项目管理之间的关系
    javascript中关系运算符的整理
    javascript中数组的基础----length和元素的求和
    回调函数和递归函数的应用
    谷歌浏览器打开时显示的是搜狗
    二级导航栏的立体显示
    利用css写的中英文切换的导航栏菜单
    javascript中的对象浅谈
    javascript中逻辑运算符总结
  • 原文地址:https://www.cnblogs.com/pursuiting/p/7897016.html
Copyright © 2020-2023  润新知