1.R(世博会
x<-c(1.37,1.46,1.65,1.53,1.66,1.81,2.38,2.73); pri<-ts(data=x,frequency =10) library(forecast) pri.arima<-auto.arima(pri,ic=c('bic')) fore<-forecast.Arima(pri.arima,h=12) fore 1、境外游客数: > pri.arima Series: pri ARIMA(0,1,0) with drift Coefficients: drift 0.1943 s.e. 0.0758 sigma^2 estimated as 0.04017: log likelihood=1.32 AIC=1.36 AICc=4.36 BIC=1.25 > fore Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 9 2.924286 2.667440 3.181132 2.531474 3.317098 10 3.118571 2.755336 3.481806 2.563051 3.674091 11 3.312857 2.867987 3.757727 2.632487 3.993227 12 3.507143 2.993451 4.020835 2.721519 4.292767 13 3.701429 3.127104 4.275753 2.823074 4.579783 14 3.895714 3.266573 4.524856 2.933526 4.857903 15 4.090000 3.410450 4.769550 3.050717 5.129283 16 4.284286 3.557816 5.010756 3.173246 5.395326 17 4.478571 3.708034 5.249109 3.300136 5.657007 18 4.672857 3.860639 5.485075 3.430677 5.915038 19 4.867143 4.015281 5.719004 3.564333 6.169953 20 5.061429 4.171688 5.951169 3.700688 6.422169
2.(2014D研究生
library(zoo) x<-c(0.489945984,0.528481066,2.600427657,2.918029633,2.589649436,1.438194248,1.257541996,1.361928647 ) #y<-log(x); pri<-ts(data=x,frequency =1,start=c(2005)) plot(pri) acf(pri) pacf(pri) p<-shapiro.test(pri) #p-vaule 大于0.05即可认为服从残差服从正p态分布 library(forecast) pri.arima<-auto.arima(pri) pri2<-arima(pri,c(0,2,0),method = "ML") r<-pri.arima$residuals p2<-Box.test(r,type="Ljung-Box",lag=3, fitdf=1) p3<-Box.test(pri2$residuals,type="Ljung-Box",lag=3, fitdf=1) tsdiag(pri2) fore<-forecast.Arima(pri.arima,h=8,level = c(99.5)) fore2<-predict(pri2,8,se.fit=TRUE,level=99.5) fore