// hdu1542
// 线扫瞄思想结合线段树求覆盖面积问题,也能求周长。具体如何线扫瞄 下面参考博客里面有
// 直接百度学的(想破脑壳也只能是wa或者tle)
// 参考博客 HDU 1542 Atlantis(线段树:扫描线)
// 不能算抄。。。结合了多方代码得出我喜欢的写法。。。离散化区间问题只停留在听懂的层面上, 之前并查集区间离散化也是囫囵吞枣的学,不能这样啊( ఠൠఠ )ノ
1 #include<cstdio> 2 #include<algorithm> 3 #define L k<<1 4 #define R k<<1|1 5 #define mid (tree[k].l+tree[k].r)>>1 6 using namespace std; 7 typedef long long ll; 8 const int MAXN = 200+5; 9 10 double X[MAXN]; 11 struct Edge { 12 double l, r; 13 double h; 14 int f; 15 Edge() {} 16 Edge(double l, double r, double h, int f):l(l),r(r),h(h),f(f) {} 17 bool operator < (const Edge &a) const { 18 return h < a.h; 19 } 20 }edge[MAXN]; 21 //Edge ; 22 23 struct segmemt_tree { 24 int l, r;// 左右区间端点 25 int cover; 26 double len; 27 }tree[4*MAXN+1]; 28 29 inline void build(int k, int l, int r) { 30 tree[k].l = l; tree[k].r = r; 31 tree[k].cover = tree[k].len = 0; 32 if(l == r) return ; 33 int m = mid; 34 build(L, l, m); 35 build(R, m+1, r); 36 } 37 38 inline void push_up(int k) { 39 if(tree[k].cover) tree[k].len = X[tree[k].r+1] - X[tree[k].l]; 40 else if(tree[k].l == tree[k].r) tree[k].len = 0; 41 else tree[k].len = tree[L].len + tree[R].len; 42 } 43 44 inline void update(int k, int x, int y, int cover) { 45 if(tree[k].l >= x && tree[k].r <= y) { 46 tree[k].cover += cover; 47 push_up(k); 48 return ; 49 } 50 int m = mid; 51 if(x <= m) update(L, x, y, cover); 52 if(y > m) update(R, x, y, cover); 53 push_up(k); 54 } 55 56 int main() { 57 int n, Case = 0; 58 while(scanf("%d", &n) == 1 && n) { 59 int cnt = 0; 60 double x1, y1, x2, y2; 61 for(int i = 0; i != n; ++i) { 62 scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); 63 X[cnt] = x1; 64 edge[cnt++] = Edge(x1, x2, y1, 1); 65 X[cnt] = x2; 66 edge[cnt++] = Edge(x1, x2, y2, -1); 67 } 68 sort(X, X+cnt); 69 sort(edge, edge+cnt); 70 int k = unique(X, X+cnt) - X; 71 build(1, 0, k-1); 72 double sum = 0; 73 for(int i = 0; i != cnt; ++i) { 74 int l = lower_bound(X, X+k, edge[i].l) - X; 75 int r = lower_bound(X, X+k, edge[i].r) - X - 1; 76 update(1, l, r, edge[i].f); 77 sum += (edge[i+1].h - edge[i].h) * tree[1].len; 78 } 79 printf("Test case #%d ", ++Case); 80 printf("Total explored area: %.2lf ", sum); 81 } 82 return 0; 83 }
// hdu 1255上一题升级版(求覆盖两次和两次以上的面积)
1 /* 2 * @Author: pupil-XJ 3 * @Date: 2019-10-10 00:09:46 4 * @LastEditTime: 2019-10-10 11:47:20 5 */ 6 #include<cstdio> 7 #include<algorithm> 8 #define L k<<1 9 #define R k<<1|1 10 #define mid (tree[k].l+tree[k].r)>>1 11 using namespace std; 12 const int MAXN = 2000+5; 13 14 double x[MAXN]; 15 struct Edge { 16 double l, r, h; 17 int f; 18 Edge(){} 19 Edge(double l, double r, double h, int f):l(l),r(r),h(h),f(f){} 20 bool operator < (const Edge &a) const { 21 return h < a.h; 22 } 23 } edge[MAXN]; 24 25 struct segmemt_tree { 26 int l, r, cover; 27 double len1, len2;// len1(cover once) len2(cover over than once) 28 } tree[4*MAXN+1]; 29 30 inline void build(int k, int l, int r) { 31 tree[k].l = l; tree[k].r = r; 32 tree[k].cover = tree[k].len1 = tree[k].len2 = 0; 33 if(l == r) return ; 34 int m = mid; 35 build(L, l, m); 36 build(R, m+1, r); 37 } 38 39 inline void push_up(int k) { 40 // update->len1 41 if(tree[k].cover) tree[k].len1 = x[tree[k].r+1] - x[tree[k].l]; 42 else if(tree[k].l == tree[k].r) tree[k].len1 = 0; 43 else tree[k].len1 = tree[L].len1 + tree[R].len1; 44 // update->len2 45 if(tree[k].cover > 1) tree[k].len2 = x[tree[k].r+1] - x[tree[k].l]; 46 else if(tree[k].l == tree[k].r) tree[k].len2 = 0; 47 else if(tree[k].cover == 1) tree[k].len2 = tree[L].len1 + tree[R].len1; 48 else tree[k].len2 = tree[L].len2 + tree[R].len2; 49 } 50 51 inline void update(int k, int x, int y, int f) { 52 if(tree[k].l >= x && tree[k].r <= y) { 53 tree[k].cover += f; 54 push_up(k); 55 return ; 56 } 57 int m = mid; 58 if(x <= m) update(L, x, y, f); 59 if(y > m) update(R, x, y, f); 60 push_up(k); 61 } 62 63 int main() { 64 int T, n; 65 double x1, y1, x2, y2; 66 scanf("%d", &T); 67 while(T--) { 68 scanf("%d", &n); 69 int cnt = 0; 70 for(int i = 0; i != n; ++i) { 71 scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); 72 x[cnt] = x1; 73 edge[cnt++] = Edge(x1, x2, y1, 1); 74 x[cnt] = x2; 75 edge[cnt++] = Edge(x1, x2, y2, -1); 76 } 77 sort(x, x+cnt); 78 sort(edge, edge+cnt); 79 int k = unique(x, x+cnt) - x; 80 81 build(1, 0, k-1); 82 double sum = 0; 83 for(int i = 0; i != cnt; ++i) { 84 int l = lower_bound(x, x+k, edge[i].l) - x; 85 int r = lower_bound(x, x+k, edge[i].r) - x - 1; 86 update(1, l, r, edge[i].f); 87 sum += (edge[i+1].h - edge[i].h) * tree[1].len2; 88 } 89 printf("%.2lf ", sum); 90 } 91 return 0; 92 }
// poj 1177 求覆盖周长
推荐博客: ->。
1 #include<cstdio> 2 #include<cmath> 3 #include<algorithm> 4 #define L k<<1 5 #define R k<<1|1 6 #define mid (tree[k].l+tree[k].r)>>1 7 using namespace std; 8 const int MAXN = 10000+5; 9 10 int x[MAXN]; 11 struct Edge { 12 int l, r, h; 13 int f; 14 Edge(){} 15 Edge(int l, int r, int h, int f):l(l),r(r),h(h),f(f){} 16 bool operator < (const Edge &a) const { 17 return h < a.h; 18 } 19 } edge[MAXN]; 20 21 struct segmemt_tree { 22 int l, r, cover, num; 23 int lc, rc; 24 int len; 25 } tree[4*MAXN+1]; 26 27 inline void build(int k, int l, int r) { 28 tree[k].l = l; tree[k].r = r; 29 tree[k].cover = tree[k].num = tree[k].lc = tree[k].rc = tree[k].len = 0; 30 if(l == r) return; 31 int m = mid; 32 build(L, l, m); 33 build(R, m+1, r); 34 } 35 36 inline void push_up(int k) { 37 if(tree[k].cover) { 38 tree[k].len = x[tree[k].r+1] - x[tree[k].l]; 39 tree[k].lc = tree[k].rc = 1; 40 tree[k].num = 1; 41 } 42 else if(tree[k].l == tree[k].r) { 43 tree[k].len = 0; 44 tree[k].lc = tree[k].rc = 0; 45 tree[k].num = 0; 46 } 47 else { 48 tree[k].len = tree[L].len + tree[R].len; 49 tree[k].lc = tree[L].lc; tree[k].rc = tree[R].rc; 50 tree[k].num = tree[L].num + tree[R].num - (tree[L].rc&tree[R].lc); 51 } 52 } 53 54 inline void update(int k, int x, int y, int f) { 55 if(tree[k].l >= x && tree[k].r <= y) { 56 tree[k].cover += f; 57 push_up(k); 58 return ; 59 } 60 int m = mid; 61 if(x <= m) update(L, x, y, f); 62 if(y > m) update(R, x, y, f); 63 push_up(k); 64 } 65 66 int main() { 67 int n, cnt = 0; 68 scanf("%d", &n); 69 int x1, x2, y1, y2; 70 for(int i = 0; i != n; ++i) { 71 scanf("%d%d%d%d", &x1, &y1, &x2, &y2); 72 x[cnt] = x1; 73 edge[cnt++] = Edge(x1, x2, y1, 1); 74 x[cnt] = x2; 75 edge[cnt++] = Edge(x1, x2, y2, -1); 76 } 77 sort(x, x+cnt); 78 sort(edge, edge+cnt); 79 int k = unique(x, x+cnt) - x; 80 81 build(1, 0, k-1); 82 int sum = 0, last = 0; 83 for(int i = 0; i != cnt; ++i) { 84 int l = lower_bound(x, x+k, edge[i].l) - x; 85 int r = lower_bound(x, x+k, edge[i].r) - x - 1; 86 update(1, l, r, edge[i].f); 87 sum += abs(tree[1].len - last); 88 sum += (edge[i+1].h - edge[i].h)*2*tree[1].num; 89 last = tree[1].len; 90 } 91 printf("%d ", sum); 92 return 0; 93 }
12ewqewqeqweewqqwe