• POJ3268(最短路)


    Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 16405   Accepted: 7503

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10
    题意:求结点X到每个结点与每个结点到X结点距离之和的最大值。
    #include <cstdio>
    #include <vector>
    #include <queue>
    using namespace std;
    const int MAXN=1005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w;
        Edge(){}
        Edge(int to,int w)
        {
            this->to=to;
            this->w=w;
        }
        bool operator>(const Edge &es) const
        {
            return w > es.w;
        }
    };
    int n,m,x;
    vector<Edge> arc[MAXN];
    int d[MAXN][MAXN],vis[MAXN];
    void dijkstra(int src)
    {
        for(int i=1;i<=n;i++)
        {
            d[src][i]=INF;
            vis[i]=0;
        }
        priority_queue<Edge,vector<Edge>,greater<Edge> > que;
        que.push(Edge(src,0));
        d[src][src]=0;
        while(!que.empty())
        {
            Edge now=que.top();que.pop();
            int u=now.to;
            if(vis[u])    continue;
            vis[u]=1;
            for(int i=0,size=arc[u].size();i<size;i++)
            {
                Edge e=arc[u][i];
                if(d[src][e.to]>d[src][u]+e.w)
                {
                    d[src][e.to]=d[src][u]+e.w;
                    que.push(Edge(e.to,d[src][e.to]));
                }
            }
        }
    }
    int main()
    {
        while(scanf("%d%d%d",&n,&m,&x)!=EOF)
        {
            for(int i=1;i<=n;i++)    arc[i].clear();
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                arc[u].push_back(Edge(v,w));
            }
            for(int i=1;i<=n;i++)
            {
                dijkstra(i);
            }
            int mx=0;
            for(int i=1;i<=n;i++)
            {
                if(d[x][i]+d[i][x]>mx)
                {
                    mx=d[x][i]+d[i][x];
                }
            }
            printf("%d
    ",mx);
        }
        return 0;
    }

     spfa:

    /*
        15653331    1340502116    3268    Accepted    4596K    344MS    G++    1087B
    */
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    using namespace std;
    const int MAXN=1005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w;
        Edge(){ }
        Edge(int cto,int cw):to(cto),w(cw){ }
    };
    vector<Edge> mp[MAXN];
    int n,m,x;
    int d[MAXN][MAXN];
    int vis[MAXN];
    void dijkstra(int s)
    {
        for(int i=1;i<=n;i++)
        {
            d[s][i]=INF;
            vis[i]=0;
        }
        d[s][s]=0;
        queue<int> que;
        vis[s]=1;
        que.push(s);
        while(!que.empty())
        {
            int now=que.front();que.pop();
            vis[now]=0;
            for(int i=0;i<mp[now].size();i++)
            {
                Edge e=mp[now][i];
                if(d[s][e.to]>d[s][now]+e.w)
                {
                    d[s][e.to]=d[s][now]+e.w;
                    if(!vis[e.to])
                    {
                        que.push(e.to);
                        vis[e.to]=1;
                    }
                }
            }
        }
    }
    int main()
    {
        while(scanf("%d%d%d",&n,&m,&x)!=EOF)
        {
            for(int i=1;i<=n;i++)    mp[i].clear();
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                mp[u].push_back(Edge(v,w));
            }
            for(int i=1;i<=n;i++)
                dijkstra(i);
            int res=0;    
            for(int i=1;i<=n;i++)
            {
                if(d[x][i]+d[i][x]>res)
                {
                    res=d[x][i]+d[i][x];
                }
            }
            printf("%d
    ",res);
        }
        
        return 0;
    }

     Java版:

    dijkstra

    import java.util.PriorityQueue;
    import java.util.Scanner;
    class Edge implements Comparable
    {
        int to,w;
        Edge(){}
        Edge(int to,int w)
        {
            this.to=to;
            this.w=w;
        }
        public int compareTo(Object obj)
        {
            Edge oth=(Edge) obj;
            return w - oth.w;
        }
    }
    class List{
        static final int SIZE = 10005;
        private Edge[] es;
        private int len;
        List()
        {
            es=new Edge[SIZE];
            len=0;
        }
        void add(Edge e)
        {
            es[len++]=e;
        }
        Edge get(int index)
        {
            return es[index];
        }
        int length()
        {
            return len;
        }
    }
    
    public class Main{
        static final int MAXN=1005;
        static final int INF=0x3f3f3f3f;
        static int n,m,x;
        static List[] arc = new List[MAXN];
        
        static int[][] d = new int[MAXN][MAXN];
        static boolean[] vis = new boolean[MAXN];
        static void dijkstra(int src)
        {
            for(int i=1;i<=n;i++)
            {
                d[src][i]=INF;
                vis[i]=false;
            }
            d[src][src]=0;
            PriorityQueue<Edge> que = new PriorityQueue<Edge>();
            que.add(new Edge(src,0));
            while(!que.isEmpty())
            {
                Edge now=que.peek();que.poll();
                int u=now.to;
                if(vis[u])    continue;
                vis[u]=true;
                for(int i=0;i<arc[u].length();i++)
                {
                    Edge e=arc[u].get(i);
                    if(d[src][e.to]>d[src][u]+e.w)
                    {
                        d[src][e.to]=d[src][u]+e.w;
                        que.add(new Edge(e.to,d[src][e.to]));
                    }
                }
            }
        }
        
        public static void main(String[] args){
            Scanner in = new Scanner(System.in);
            while(in.hasNext())
            {
                n=in.nextInt();
                m=in.nextInt();
                x=in.nextInt();
                for(int i=1;i<=n;i++)
                {
                    arc[i] = new List();
                }
                for(int i=0;i<m;i++)
                {
                    int u,v,w;
                    u=in.nextInt();
                    v=in.nextInt();
                    w=in.nextInt();
                    arc[u].add(new Edge(v,w));
                }
                for(int i=1;i<=n;i++)
                {
                    dijkstra(i);
                }
                int mx=-1;
                for(int i=1;i<=n;i++)
                {
                    if(d[i][x]+d[x][i]>mx) 
                    {
                        mx=d[i][x]+d[x][i];
                    }
                }
                System.out.println(mx);
            }
        }
    }
  • 相关阅读:
    《Docker容器与容器云》读书笔记
    【Kubernetes】Kubernetes的Service外部访问方式:NodePort和LoadBalancer
    《微服务设计》读书笔记
    什么是Istio
    【Kubernetes】kube-dns 持续重启
    什么是Etcd?
    什么是Service Mesh?
    放假个人总结四
    放假个人总结三
    放假个人总结二
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5147571.html
Copyright © 2020-2023  润新知