• 【深度学习】Pytorch学习基础


    pytorch学习

    numpy & Torch

    import torch
    import numpy as np
    
    np_data = np.arange(6).reshape((2, 3))
    torch_data = torch.from_numpy(np_data)
    tensor2array = torch_data.numpy()
    print(
        '
    numpy array:', np_data,          # [[0 1 2], [3 4 5]]
        '
    torch tensor:', torch_data,      #  0  1  2 
     3  4  5    [torch.LongTensor of size 2x3]
        '
    tensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
    )
    

    torch -> numpy : torch.numpy()

    numpy -> torch :torch.from_numpy(numpy)

    Torch中的数学运算

    # abs 绝对值计算
    data = [-1, -2, 1, 2]
    tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
    print(
        '
    abs',
        '
    numpy: ', np.abs(data),          # [1 2 1 2]
        '
    torch: ', torch.abs(tensor)      # [1 2 1 2]
    )
    
    # sin   三角函数 sin
    print(
        '
    sin',
        '
    numpy: ', np.sin(data),      # [-0.84147098 -0.90929743  0.84147098  0.90929743]
        '
    torch: ', torch.sin(tensor)  # [-0.8415 -0.9093  0.8415  0.9093]
    )
    
    # mean  均值
    print(
        '
    mean',
        '
    numpy: ', np.mean(data),         # 0.0
        '
    torch: ', torch.mean(tensor)     # 0.0
    )
    

    矩阵运算

    # matrix multiplication 矩阵点乘
    data = [[1,2], [3,4]]
    tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
    # correct method
    print(
        '
    matrix multiplication (matmul)',
        '
    numpy: ', np.matmul(data, data),     # [[7, 10], [15, 22]]
        '
    torch: ', torch.mm(tensor, tensor)   # [[7, 10], [15, 22]]
    )
    
    # !!!!  下面是错误的方法 !!!!
    data = np.array(data)
    print(
        '
    matrix multiplication (dot)',
        '
    numpy: ', data.dot(data),        # [[7, 10], [15, 22]] 在numpy 中可行
        '
    torch: ', tensor.dot(tensor)     # torch 会转换成 [1,2,3,4].dot([1,2,3,4) = 30.0
    )
    

    Variable

    import torch
    from torch.autograd import Variable # torch 中 Variable 模块
    
    # 先生鸡蛋
    tensor = torch.FloatTensor([[1,2],[3,4]])
    # 把鸡蛋放到篮子里, requires_grad是参不参与误差反向传播, 要不要计算梯度
    variable = Variable(tensor, requires_grad=True)
    
    print(tensor)
    """
     1  2
     3  4
    [torch.FloatTensor of size 2x2]
    """
    
    print(variable)
    """
    Variable containing:
     1  2
     3  4
    [torch.FloatTensor of size 2x2]
    """
    

    variable tensor 对比

    t_out = torch.mean(tensor*tensor)       # x^2
    v_out = torch.mean(variable*variable)   # x^2
    print(t_out)
    print(v_out)    # 7.5000
    

    真正的不同之处在:

    Variable 计算时, 它在背景幕布后面一步步默默地搭建着一个庞大的系统, 叫做计算图, computational graph.这个图是用来将所有的计算步骤 (节点) 都连接起来, 最后进行误差反向传递的时候, 一次性将所有 variable 里面的修改幅度 (梯度) 都计算出来。tensor则没有这个能力。

    v_out = torch.mean(variable*variable) 就是在计算图中添加的一个计算步骤, 计算误差反向传递的时候有他一份功劳:

    v_out.backward()    # 模拟 v_out 的误差反向传递
    
    # 下面两步看不懂没关系, 只要知道 Variable 是计算图的一部分, 可以用来传递误差就好.
    # v_out = 1/4 * sum(variable*variable) 这是计算图中的 v_out 计算步骤
    # 针对于 v_out 的梯度就是, d(v_out)/d(variable) = 1/4*2*variable = variable/2
    
    print(variable.grad)    # 初始 Variable 的梯度
    '''
     0.5000  1.0000
     1.5000  2.0000
    '''
    

    v_out相当于y, variable相当于x, 这样就稍微好理解一点。

    既然Variable这么好,为啥还需要tensor? 因为Variable在很多情况下是用不了的,比如说plt画图

    Variable Tensor转换

    print(variable)     #  Variable 形式
    """
    Variable containing:
     1  2
     3  4
    [torch.FloatTensor of size 2x2]
    """
    
    print(variable.data)    # tensor 形式
    """
     1  2
     3  4
    [torch.FloatTensor of size 2x2]
    """
    
    print(variable.data.numpy())    # numpy 形式
    """
    [[ 1.  2.]
     [ 3.  4.]]
    """
    

    激励函数

    relu / tanh / sigmoid / softplus 常用函数 。如果使用多层激励函数,不能随便选择激励函数,否则会涉及到梯度爆炸。

    在卷积神经网络 Convolutional neural networks 的卷积层中, 推荐的激励函数是 relu. 在循环神经网络中 recurrent neural networks, 推荐的是 tanh 或者是 relu

    import torch
    import torch.nn.functional as F     # 激励函数都在这
    from torch.autograd import Variable
    
    # 做一些假数据来观看图像
    x = torch.linspace(-5, 5, 200)  # x data (tensor), shape=(100, 1)
    x = Variable(x)
    
    x_np = x.data.numpy()   # 换成 numpy array, 出图时用
    
    # 几种常用的 激励函数
    y_relu = F.relu(x).data.numpy()
    y_sigmoid = F.sigmoid(x).data.numpy()
    y_tanh = F.tanh(x).data.numpy()
    y_softplus = F.softplus(x).data.numpy()
    # y_softmax = F.softmax(x)  softmax 比较特殊, 不能直接显示, 不过他是关于概率的, 用于分类
    
    import matplotlib.pyplot as plt  # python 的可视化模块, 我有教程
    
    plt.figure(1, figsize=(8, 6))
    plt.subplot(221)
    plt.plot(x_np, y_relu, c='red', label='relu')
    plt.ylim((-1, 5))
    plt.legend(loc='best')
    
    plt.subplot(222)
    plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
    plt.ylim((-0.2, 1.2))
    plt.legend(loc='best')
    
    plt.subplot(223)
    plt.plot(x_np, y_tanh, c='red', label='tanh')
    plt.ylim((-1.2, 1.2))
    plt.legend(loc='best')
    
    plt.subplot(224)
    plt.plot(x_np, y_softplus, c='red', label='softplus')
    plt.ylim((-0.2, 6))
    plt.legend(loc='best')
    
    plt.show()
    

    回归

    创建数据集

    import torch
    import matplotlib.pyplot as plt
    
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
    
    # 画图
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.show()
    

    __init__() 层属性,forward()用于层与层之间的关系链接。

    创建网络

    import torch
    import torch.nn.functional as F     # 激励函数都在这
    
    class Net(torch.nn.Module):  # 继承 torch 的 Module
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()     # 继承 __init__ 功能
            # 定义每层用什么样的形式
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
            self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层线性输出
    
        def forward(self, x):   # 这同时也是 Module 中的 forward 功能
            # 正向传播输入值, 神经网络分析出输出值
            x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
            x = self.predict(x)             # 输出值
            return x
    
    net = Net(n_feature=1, n_hidden=10, n_output=1)
    
    print(net)  # net 的结构
    """
    Net (
      (hidden): Linear (1 -> 10)
      (predict): Linear (10 -> 1)
    )
    """
    

    训练网络

    # optimizer 是训练的工具
    optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 传入 net 的所有参数, 学习率
    loss_func = torch.nn.MSELoss()      # 预测值和真实值的误差计算公式 (均方差)
    
    for t in range(100):
        prediction = net(x)     # 喂给 net 训练数据 x, 输出预测值
    
        loss = loss_func(prediction, y)     # 计算两者的误差
    
        optimizer.zero_grad()   # 清空上一步的残余更新参数值
        loss.backward()         # 误差反向传播, 计算参数更新值
        optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
    

    可视化训练过程

    import matplotlib.pyplot as plt
    
    plt.ion()   # 画图
    plt.show()
    
    for t in range(200):
    
        ...
        loss.backward()
        optimizer.step()
    
        # 接着上面来
        if t % 5 == 0:
            # plot and show learning process
            plt.cla()
            plt.scatter(x.data.numpy(), y.data.numpy())
            plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
            plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    

    区分类型

    创建数据集

    import torch
    import matplotlib.pyplot as plt
    
    # 假数据
    n_data = torch.ones(100, 2)         # 数据的基本形态
    x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2)
    y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(100, 1)
    x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 2)
    y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(100, 1)
    
    # 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
    x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # FloatTensor = 32-bit floating
    y = torch.cat((y0, y1), ).type(torch.LongTensor)    # LongTensor = 64-bit integer
    
    # plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
    # plt.show()
    
    # 画图
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.show()
    

    创建神经网络

    import torch
    import torch.nn.functional as F     # 激励函数都在这
    
    class Net(torch.nn.Module):     # 继承 torch 的 Module
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()     # 继承 __init__ 功能
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
            self.out = torch.nn.Linear(n_hidden, n_output)       # 输出层线性输出
    
        def forward(self, x):
            # 正向传播输入值, 神经网络分析出输出值
            x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
            x = self.out(x)                 # 输出值, 但是这个不是预测值, 预测值还需要再另外计算
            return x
    
    net = Net(n_feature=2, n_hidden=10, n_output=2) # 几个类别就几个 output
    
    print(net)  # net 的结构
    """
    Net (
      (hidden): Linear (2 -> 10)
      (out): Linear (10 -> 2)
    )
    """
    

    训练

    # optimizer 是训练的工具
    optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
    # 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
    # 但是预测值是2D tensor (batch, n_classes)
    loss_func = torch.nn.CrossEntropyLoss()
    
    for t in range(100):
        out = net(x)     # 喂给 net 训练数据 x, 输出分析值
    
        loss = loss_func(out, y)     # 计算两者的误差
    
        optimizer.zero_grad()   # 清空上一步的残余更新参数值
        loss.backward()         # 误差反向传播, 计算参数更新值
        optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
    

    可视化

    import matplotlib.pyplot as plt
    
    plt.ion()   # 画图
    plt.show()
    
    for t in range(100):
    
        ...
        loss.backward()
        optimizer.step()
    
        # 接着上面来
        if t % 2 == 0:
            plt.cla()
            # 过了一道 softmax 的激励函数后的最大概率才是预测值
            prediction = torch.max(F.softmax(out), 1)[1]
            pred_y = prediction.data.numpy().squeeze()
            target_y = y.data.numpy()
            plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
            accuracy = sum(pred_y == target_y)/200.  # 预测中有多少和真实值一样
            plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    plt.ioff()  # 停止画图
    plt.show()
    

    快速搭建法

    之前搭建网络的方法:

    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)
            self.predict = torch.nn.Linear(n_hidden, n_output)
    
        def forward(self, x):
            x = F.relu(self.hidden(x))
            x = self.predict(x)
            return x
    
    net1 = Net(1, 10, 1)   # 这是我们用这种方式搭建的 net1
    

    更快方式:

    net2 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    

    对比结构:

    print(net1)
    """
    Net (
      (hidden): Linear (1 -> 10)
      (predict): Linear (10 -> 1)
    )
    """
    print(net2)
    """
    Sequential (
      (0): Linear (1 -> 10)
      (1): ReLU ()
      (2): Linear (10 -> 1)
    )
    """
    

    模型的保存与提取

    快速构建网络:

    torch.manual_seed(1)    # reproducible
    
    # 假数据
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
    
    def save():
        # 建网络
        net1 = torch.nn.Sequential(
            torch.nn.Linear(1, 10),
            torch.nn.ReLU(),
            torch.nn.Linear(10, 1)
        )
        optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
        loss_func = torch.nn.MSELoss()
    
        # 训练
        for t in range(100):
            prediction = net1(x)
            loss = loss_func(prediction, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    

    保存方式:

    torch.save(net1, 'net.pkl')  # 保存整个网络
    torch.save(net1.state_dict(), 'net_params.pkl')   # 只保存网络中的参数 (速度快, 占内存少)
    

    提取网络:

    def restore_net():
        # restore entire net1 to net2
        net2 = torch.load('net.pkl')
        prediction = net2(x)
    

    只提取网络参数:

    def restore_params():
        # 新建 net3
        net3 = torch.nn.Sequential(
            torch.nn.Linear(1, 10),
            torch.nn.ReLU(),
            torch.nn.Linear(10, 1)
        )
    
        # 将保存的参数复制到 net3
        net3.load_state_dict(torch.load('net_params.pkl'))
        prediction = net3(x)
    

    调用以上函数并显示结果:

    # 保存 net1 (1. 整个网络, 2. 只有参数)
    save()
    
    # 提取整个网络
    restore_net()
    
    # 提取网络参数, 复制到新网络
    restore_params()
    

    批训练

    DataLoader是一个包装数据的工具,将自己的数据形式转化为Tensor,然后放入包装器中;其作用在于帮助有效地迭代数据。

    import torch
    import torch.utils.data as Data
    torch.manual_seed(1)    # reproducible
    
    BATCH_SIZE = 5      # 批训练的数据个数
    
    x = torch.linspace(1, 10, 10)       # x data (torch tensor)
    y = torch.linspace(10, 1, 10)       # y data (torch tensor)
    
    # 先转换成 torch 能识别的 Dataset
    torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
    
    # 把 dataset 放入 DataLoader
    loader = Data.DataLoader(
        dataset=torch_dataset,      # torch TensorDataset format
        batch_size=BATCH_SIZE,      # mini batch size
        shuffle=True,               # 要不要打乱数据 (打乱比较好)
        num_workers=2,              # 多线程来读数据
    )
    
    for epoch in range(3):   # 训练所有!整套!数据 3 次
        for step, (batch_x, batch_y) in enumerate(loader):  # 每一步 loader 释放一小批数据用来学习
            # 假设这里就是你训练的地方...
    
            # 打出来一些数据
            print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
                  batch_x.numpy(), '| batch y: ', batch_y.numpy())
    
    """
    Epoch:  0 | Step:  0 | batch x:  [ 6.  7.  2.  3.  1.] | batch y:  [  5.   4.   9.   8.  10.]
    Epoch:  0 | Step:  1 | batch x:  [  9.  10.   4.   8.   5.] | batch y:  [ 2.  1.  7.  3.  6.]
    Epoch:  1 | Step:  0 | batch x:  [  3.   4.   2.   9.  10.] | batch y:  [ 8.  7.  9.  2.  1.]
    Epoch:  1 | Step:  1 | batch x:  [ 1.  7.  8.  5.  6.] | batch y:  [ 10.   4.   3.   6.   5.]
    Epoch:  2 | Step:  0 | batch x:  [ 3.  9.  2.  6.  7.] | batch y:  [ 8.  2.  9.  5.  4.]
    Epoch:  2 | Step:  1 | batch x:  [ 10.   4.   8.   1.   5.] | batch y:  [  1.   7.   3.  10.   6.]
    """
    

    的确挺好用,:happy:

    如果换成BATCH_SIZE=8的话,如果不够8个数据,那就只能返回剩下的数据了。

    加速神经网络训练

    https://morvanzhou.github.io/tutorials/machine-learning/torch/3-05-train-on-batch/

    SGD->Momentum->AdaGrad->RMSProp->Adam

    这一块不是很明白

    Optimizer优化器

    伪数据:

    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    torch.manual_seed(1)    # reproducible
    
    LR = 0.01
    BATCH_SIZE = 32
    EPOCH = 12
    
    # fake dataset
    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
    
    # plot dataset
    plt.scatter(x.numpy(), y.numpy())
    plt.show()
    
    # 使用上节内容提到的 data loader
    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(
        dataset=torch_dataset,
        batch_size=BATCH_SIZE,
        shuffle=True, 
        num_workers=2,)
    

    每个优化器优化一个神经网络:

    # 默认的 network 形式
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(1, 20)   # hidden layer
            self.predict = torch.nn.Linear(20, 1)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    # 为每个优化器创建一个 net
    net_SGD         = Net()
    net_Momentum    = Net()
    net_RMSprop     = Net()
    net_Adam        = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
    

    优化器:

    # different optimizers
    opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
    
    loss_func = torch.nn.MSELoss()
    losses_his = [[], [], [], []]   # 记录 training 时不同神经网络的 loss
    

    训练出图:

    for epoch in range(EPOCH):
        print('Epoch: ', epoch)
        for step, (b_x, b_y) in enumerate(loader):
    
            # 对每个优化器, 优化属于他的神经网络
            for net, opt, l_his in zip(nets, optimizers, losses_his):
                output = net(b_x)              # get output for every net
                loss = loss_func(output, b_y)  # compute loss for every net
                opt.zero_grad()                # clear gradients for next train
                loss.backward()                # backpropagation, compute gradients
                opt.step()                     # apply gradients
                l_his.append(loss.data.numpy())     # loss recoder
    

    SGD 是最普通的优化器, 也可以说没有加速效果, 而 MomentumSGD 的改良版, 它加入了动量原则. 后面的 RMSprop 又是 Momentum 的升级版. 而 Adam 又是 RMSprop 的升级版. 不过从这个结果中我们看到, Adam 的效果似乎比 RMSprop 要差一点. 所以说并不是越先进的优化器, 结果越佳. 我们在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据/网络的优化器.

    CNN

    卷积主要是对图片一块像素区域进行处理,这种做法加强了图片信息的连续性,使得神经网络能看到图片。

    池化pooling: 筛选过滤的过程,将layer中有用信息过滤出来,减轻了神经网络的负担。

    MNIST手写数据

    https://morvanzhou.github.io/tutorials/machine-learning/torch/4-01-CNN/

    Reference

    https://morvanzhou.github.io/tutorials/machine-learning/torch/2-02-variable/

  • 相关阅读:
    第六次实训作业
    事件处理程序
    第四次实训作业
    I/O流
    课程总结
    求和计算器
    常用类的课后作业
    窗口实训1
    课后练习----实现窗口的切换
    第五次实训作业继承
  • 原文地址:https://www.cnblogs.com/pprp/p/9751227.html
Copyright © 2020-2023  润新知