• 连续取模-function


    2017-09-22 21:56:08

    The shorter, the simpler. With this problem, you should be convinced of this truth. 
       
      You are given an array AA of NN postive integers, and MM queries in the form (l,r)(l,r). A function F(l,r) (1lrN)F(l,r) (1≤l≤r≤N) is defined as: 
    F(l,r)={AlF(l,r1) modArl=r;l<r.F(l,r)={All=r;F(l,r−1) modArl<r. 
    You job is to calculate F(l,r)F(l,r), for each query (l,r)(l,r).

    InputThere are multiple test cases. 
       
      The first line of input contains a integer TT, indicating number of test cases, and TT test cases follow. 
       
      For each test case, the first line contains an integer N(1N100000)N(1≤N≤100000). 
      The second line contains NN space-separated positive integers: A1,,AN (0Ai109)A1,…,AN (0≤Ai≤109). 
      The third line contains an integer MM denoting the number of queries. 
      The following MM lines each contain two integers l,r (1lrN)l,r (1≤l≤r≤N), representing a query.

    OutputFor each query(l,r)(l,r), output F(l,r)F(l,r) on one line.Sample Input

    1
    3
    2 3 3
    1
    1 3

    Sample Output

    2

    代码如下:
    #include<iostream>
    #include<string.h>
    #include<stdlib.h>
    #include<stdio.h>
    
    using namespace std;
    
    #define MAXN 100010
    
    int a[MAXN],nex[MAXN];
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int i,j,n,m;
            scanf("%d",&n);
            for(i = 1; i<=n; ++i)
            {
                scanf("%d",&a[i]);
            }
            for(i = 1;i<=n;++i)
            {
                nex[i] = -1;
                for(j = i+1;j<=n;++j)
                {
                    if(a[j]<=a[i])
                    {
                        nex[i] = j;
                        break;
                    }
                }
            }
            scanf("%d",&m);
            for(i = 0;i<m;++i)
            {
                int l,r;
                scanf("%d%d",&l,&r);
                int num = a[l];
                for(j = nex[l];j<=r;j = nex[j])
                {
                    if(j == -1)
                    {
                        break;
                    }
                    num%=a[j];
                }
                printf("%d
    ",num);
            }
        }
        return 0;
    }
  • 相关阅读:
    461. Hamming Distance
    342. Power of Four
    326. Power of Three
    368. Largest Divisible Subset java solutions
    95. Unique Binary Search Trees II java solutions
    303. Range Sum Query
    160. Intersection of Two Linked Lists java solutions
    88. Merge Sorted Array java solutions
    67. Add Binary java solutions
    14. Longest Common Prefix java solutions
  • 原文地址:https://www.cnblogs.com/pprp/p/7577351.html
Copyright © 2020-2023  润新知