• 【Pytorch基础】Torchvision中transform的脚本化


    Transforms从torch1.7开始新增了该特性,之前transform进行数据增强的方式是如下的,i.e. 使用compose的方式:

    default_configure = T.Compose([
                T.RandomCrop(32, 4),
                T.RandomHorizontalFlip(),
                T.RandomResizedCrop((32, 32)),  
                T.RandomRotation(15)
            ])
    

    现在Transforms支持以下方式:

    import torch
    import torchvision.transforms as T
    
    # to fix random seed, use torch.manual_seed
    # instead of random.seed
    torch.manual_seed(12)
    
    transforms = torch.nn.Sequential(
        T.RandomCrop(224),
        T.RandomHorizontalFlip(p=0.3),
        T.ConvertImageDtype(torch.float),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    )
    scripted_transforms = torch.jit.script(transforms)
    
    tensor_image = torch.randint(0, 256, size=(3, 256, 256), dtype=torch.uint8)
    # works directly on Tensors
    out_image1 = transforms(tensor_image)
    # on the GPU
    out_image1_cuda = transforms(tensor_image.cuda())
    # with batches
    batched_image = torch.randint(0, 256, size=(4, 3, 256, 256), dtype=torch.uint8)
    out_image_batched = transforms(batched_image)
    # and has torchscript support
    out_image2 = scripted_transforms(tensor_image)
    
    

    Compose和脚本化的合作也是可行的:

    Note: we can similarly use T.Compose to define transforms
    transforms = T.Compose([...]) and 
    scripted_transforms = torch.jit.script(torch.nn.Sequential(*transforms.transforms))
    

    以上方法有几点特征:

    • 数据增强可以支持GPU加速
    • batch化 transformation,视频处理中使用更方便。
    • 可以支持多channel的tensor增强,而不仅仅是3通道或者4通道的tensor。
    代码改变世界
  • 相关阅读:
    rust 实战 实现一个线程工作池 ThreadPool
    rust Cell 与 RefCell的区别
    使用pre标签显示原始文本并自动换行
    rust实战 newtype模式
    什么是幻读,怎么解决幻读
    rust match 模式匹配摘录
    Elasticsearch 8的版本来了;可以直接在 Elasticsearch 中使用 PyTorch Machine Learning 模型
    神奇的库 phone
    python中单例的实现
    斐波那契查找
  • 原文地址:https://www.cnblogs.com/pprp/p/14897189.html
Copyright © 2020-2023  润新知