• 【统计学习方法】朴素贝叶斯法


    1. 基础知识

    1.1 条件概率

    一个事件概率依赖于另外一个事件(已发生)的度量。

    (P(B|A))的意义是在A发生的情况下B事件发生的概率。这就是条件概率。

    (P(AB) = P(A) imes P(B|A)​) 代表的意义是,AB事件同时发生的概率等于事件A发生的概率乘以在A发生条件下B事件发生的概率。

    [P(B|A)=frac{P(AB)}{P(A)} ]

    事件序列发生且彼此相互依赖,所以才有条件概率,这是前提。如果A, B两个事件没有相互依赖关系,那么就是独立事件。在独立事件的情况下,两个事件不会相互影响对方。

    [P(B|A)=P(B) if A,B互为独立事件 ]

    1.2 全概率定律

    事件A1,A2,A3,...... A是相互排斥的,不能同时发生。若事件A1,A2,…构成一个完备事件组且都有正概率,则对任意一个事件B,有如下公式成立:

    [P(B) = P(BA_1)+P(BA_2)+...+P(BA_n) \ =P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + ... + P(B|A_n)P(A_n) ]

    1.3 贝叶斯定理

    graph TB start-->A A-->B B-->A A-->start

    最简单形式:

    后验概率 = 修正因子 x 先验概率

    [P(A|B)=frac{P(B|A)}{P(B)} imes P(A) ]

    graph TB start-->A1 start-->A2 start-->A3 start-->An A1-->B A2-->B A3-->B An-->B

    [P(A_i|B) = frac{P(B|A_i) imes P(A_i)}{sum_1^{n}P(A_i) imes P(B|A_i)} ]

    1.4 极大似然估计

    极大似然估计是概率论中一个很常用的估计方法,在机器学习中的逻辑回归中就是基于它计算的损失函数

    极大似然估计是基于一个理论:概率最大的事件,最可能发生

    极大似然估计(maximum likelihood estimation, MLE),通俗的说就是 —— 最像估计法(最可能估计法)

    极大似然原理与数学表示: 有n个实验结果,(A_i)(A_n),如果(A_j)发生了,则意味着(A_j)发生的概率最大。即,一次试验就发生的事件,这个事件本身发生概率最大

  • 相关阅读:
    删除lv
    nohop以及后台运行的相关集合
    linux 上安装pstree
    python中的异常
    ansible批量验证密码
    Linux显示不了中文
    zabbix修改和查看登录密码
    chkconfig --add失败的处理方法
    vivado2016.2下系统自带DDR3 ip例程仿真运行
    分享我们必须知道的高速GTX技术
  • 原文地址:https://www.cnblogs.com/pprp/p/11250786.html
Copyright © 2020-2023  润新知