• Poj 1094 拓扑排序Kahn


    Poj 1094 拓扑排序Kahn

    Sorting It All Out

    Time Limit: 1000MS Memory Limit: 10000K
    Total Submissions: 41332 Accepted: 14478

    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

    Output

    For each problem instance, output consists of one line. This line should be one of the following three:

    Sorted sequence determined after xxx relations: yyy...y.
    Sorted sequence cannot be determined.
    Inconsistency found after xxx relations.

    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

    Sample Input

    4 6
    A<B
    A<C
    B<C
    C<D
    B<D
    A<B
    3 2
    A<B
    B<A
    26 1
    A<Z
    0 0
    

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.
    

    题目大意:给你多组边让你判断是否能够确定一个拓扑排序,这也就意味着我们的排序只能有唯一的一种,不能有多种方案,也就是说这里并不保证给我们的是一个DAG图。而要求我们自己判断

    这里就要用到拓扑排序的一个经典算法Kahn:

    摘一段维基百科上关于Kahn算法的伪码描述:
    

    L← Empty list that will contain the sorted elements
    S ← Set of all nodes with no incoming edges
    while S is non-empty do
    remove a node n from S
    insert n into L
    foreach node m with an edge e from nto m do
    remove edge e from thegraph
    ifm has no other incoming edges then
    insert m into S
    if graph has edges then
    return error (graph has at least onecycle)
    else
    return L (a topologically sortedorder)

    不难看出该算法的实现十分直观,关键在于需要维护一个入度为0的顶点的集合:

    每次从该集合中取出(没有特殊的取出规则,随机取出也行,使用队列/栈也行,下同)一个顶点,将该顶点放入保存结果的List中。

    紧接着循环遍历由该顶点引出的所有边,从图中移除这条边,同时获取该边的另外一个顶点,如果该顶点的入度在减去本条边之后为0,那么也将这个顶点放到入度为0的集合中。然后继续从集合中取出一个顶点…………

    当集合为空之后,检查图中是否还存在任何边,如果存在的话,说明图中至少存在一条环路。不存在的话则返回结果List,此List中的顺序就是对图进行拓扑排序的结果。

    代码如下:

    #include<vector>
    #include<queue>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 27;
    int n,m;
    vector<int> G[maxn];
    int in[maxn],deg[maxn];
    char ans[maxn];
    int cnt;
    void init() {
        for(int i = 0;i < n;i++) G[i].clear();
        memset(in,0,sizeof(in));
    }
    bool check(int u,int v) {
        for(int i = 0;i < G[u].size();i++) if(G[u][i] == v) return true;
        return false;
    }
    //传入当前边数
    int topsort(int s) {
        for(int i = 0;i < n;i++) deg[i] = in[i];
        cnt = 0;
        int flag = 1;
        memset(ans,0,sizeof(ans));
        queue<int> Q;
        while(!Q.empty()) Q.pop();
        for(int i = 0;i < n;i++) {
            if(deg[i] == 0) Q.push(i);
        }
        //if(Q.size() > 1) flag = 0; !!!判断是否有多种情况
        while(!Q.empty()) {
            if(Q.size() > 1) flag = 0; 
            int u = Q.front();Q.pop();
            ans[cnt++] = u + 'A';
            int len = G[u].size();
            for(int i = 0;i < len;i++) {
                int v = G[u][i];
                deg[v]--;
                s--;
                if(deg[v] == 0) {
                    Q.push(v);
                }
            }
        }
        if(s != 0) return 2;
        else if(cnt == n && flag) return 3;
        else return 1; 
    }
    int main() {
        while(scanf("%d%d",&n,&m) == 2) {
            if(n == 0 && m == 0) break;
            init();
            char s[5];
            int flag,ok = 0,k;
            for(int i = 0;i < m;i++) {
                scanf("%s",s);
                if(ok) continue;
                int u = s[0] - 'A',v = s[2] - 'A';
                if(check(u,v)) continue;
                in[v]++;
                G[u].push_back(v);
                flag = topsort(i+1);
                if(flag == 3) {
                    ok = 1;
                    printf("Sorted sequence determined after %d relations: %s.
    ",i+1,ans);
                }
                else if(flag == 2) {
                    ok = 1;
                    printf("Inconsistency found after %d relations.
    ",i+1);
                }
            }
            if(flag == 1) printf("Sorted sequence cannot be determined.
    ");
        }
        return 0;
    }
    
    我现在最大的问题就是人蠢而且还懒的一批。
  • 相关阅读:
    监视和调整硬件性能
    ASP.NET MVC三个重要的描述对象:ActionDescriptor
    REST in Practice
    软硬件错误的排查之道
    OMCS 多媒体连接系统
    逻辑层 vs 物理层
    深入浅出裸测之道单元测试的单元化
    简单的网络爬虫实现
    WCF返回JSON与传入JSON(普通参数或对象)
    .NET程序员的一个礼物——TypeMonster
  • 原文地址:https://www.cnblogs.com/pot-a-to/p/11119197.html
Copyright © 2020-2023  润新知