• Poj 2084 Game of Connections 卡特兰数高精度


    Poj 2084 Game of Connections 卡特兰数高精度

    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another.
    And, no two segments are allowed to intersect.
    It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right? 
    

    Input
    Each line of the input file will be a single positive number n, except the last line, which is a number -1.
    You may assume that 1 <= n <= 100.
    Output
    For each n, print in a single line the number of ways to connect the 2n numbers into pairs.
    Sample Input

    2
    3
    -1
    

    Sample Output

    2
    5
    

    分析:找规律发现通项是卡特兰数

    由于n<=100所以这里会爆long long 要用到高精度

    卡塔兰数的一般项公式为$ {displaystyle C_{n}={frac {1}{n+1}}{2n choose n}={frac {(2n)!}{(n+1)!n!}}} $

    前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

    Cn的另一个表达形式为${displaystyle C_{n}={2n choose n}-{2n choose n+1}quad {mbox{ for }}ngeq 1} $

    代码如下

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    using namespace std;
    #define MAXN 9999
    #define MAXSIZE 1010
    #define DLEN 4
    class BigNum{
        private:
            int a[500];//大数位数
            int len;
        public:
            BigNum() {len = 1;memset(a,0,sizeof(a));}
            BigNum(const int);
            BigNum(const char*);
            BigNum(const BigNum &);
            BigNum &operator=(const BigNum &);
            friend istream& operator>>(istream&,BigNum&);
            friend ostream& operator<<(ostream&,BigNum&);
            BigNum operator+(const BigNum &) const;
            BigNum operator-(const BigNum &) const;
            BigNum operator*(const BigNum &) const;
            BigNum operator/(const int &) const;
            BigNum operator^(const int &) const;
            int operator%(const int &) const;
            bool operator>(const BigNum &T) const;
            bool operator>(const int &t) const;
            void print();
    };
    BigNum::BigNum(const int b) {
        int c,d = b;
        len = 0;
        memset(a,0,sizeof(a));
        while(d > MAXN) {
            c = d - (d/(MAXN+1)) * (MAXN+1);
            d = d/(MAXN+1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    BigNum::BigNum(const char *s) {
        int t,k,index,L,i;
        memset(a,0,sizeof(a));
        L = strlen(s);
        len = L/DLEN;
        if(L%DLEN) len++;
        index = 0;
        for(int i = L-1;i >= 0;i-=DLEN) {
            t = 0;
            k = i - DLEN + 1;
            if(k < 0) k = 0;
            for(int j = k;j <= i;j++) 
                t = t*10+s[j] - '0';
            a[index++] = t; 
        } 
    }
    BigNum::BigNum(const BigNum &T):len(T.len) {
        int i;
        memset(a,0,sizeof(a));
        for(i = 0;i < len;i++) 
            a[i] = T.a[i];
    }
    BigNum & BigNum::operator=(const BigNum &n) {
        int i;
        len = n.len;
        memset(a,0,sizeof(a));
        for(i = 0;i < len;i++) 
        a[i] = n.a[i];
        return *this;
    }
    istream& operator>>(istream &in,BigNum &b) {
        int i = -1;
        char ch[MAXSIZE*4];
        in>>ch;
        int L = strlen(ch);
        int count = 0,sum = 0;
        for(i = L - 1;i >= 0;) {
            sum = 0;
            int t = 1;
            for(int j = 0;j < 4 && i >= 0;j++,i--,t*=10) {
                sum += (ch[i]-'0')*t;
            }
            b.a[count] = sum;
            count++;
        }
        b.len = count++;
        return in;
    }
    ostream& operator<<(ostream& out,BigNum& b) {
        int i;
        cout<<b.a[b.len - 1];
        for(i = b.len-2;i >= 0;i--) printf("%04d",b.a[i]);
        return out;
    }
    BigNum BigNum::operator+(const BigNum &T) const {
        BigNum t(*this);
        int i,big;
        big = T.len > len ? T.len : len;
        for(i = 0;i < big;i++) {
            t.a[i] += T.a[i];
            if(t.a[i] > MAXN) {
                t.a[i+1]++;
                t.a[i] -= MAXN+1;
            }
        }
        if(t.a[big] != 0) t.len = big+1;
        else t.len = big;
        return t;
    }
    BigNum BigNum::operator-(const BigNum &T) const {
        int i,j,big;
        bool flag;
        BigNum t1,t2;
        if(*this > T) {
            t1 = *this;
            t2 = T;
            flag = 0;
        }
        else {
            t1 = T;
            t2 = *this;
            flag = 1;
        }
        big = t1.len;
        for(i = 0;i < big;i++) {
            if(t1.a[i] < t2.a[i]) {
                j = i+1;
                while(t1.a[j] == 0) j++;
                t1.a[j--]--;
                while(j > i) t1.a[j--] += MAXN;
                t1.a[i] += MAXN+1-t2.a[i];
            }
            else t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[t1.len - 1] == 0 && t1.len > 1) {
            t1.len--;
            big--;
        }
        if(flag) t1.a[big - 1] = -t1.a[big - 1];
        return t1;
    }
    BigNum BigNum::operator*(const BigNum &T) const {
        BigNum ret;
        int i,j,up;
        int temp,temp1;
        for(i = 0;i < len;i++) {
            up = 0;
            for(j = 0;j < T.len;j++) {
                temp = a[i]*T.a[j]+ret.a[i+j]+up;
                if(temp > MAXN) {
                    temp1 = temp - temp/(MAXN+1)*(MAXN+1);
                    up = temp/(MAXN+1);
                    ret.a[i+j] = temp1;
                }
                else {
                    up = 0;
                    ret.a[i+j] = temp;
                }
            }
            if(up != 0) ret.a[i+j] = up;
        }
        ret.len = i+j;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
        return ret;
    }
    BigNum BigNum::operator/(const int &b) const {
        BigNum ret;
        int i,down = 0;
        for(i = len -1;i >= 0;i--) {
            ret.a[i] = (a[i]+down*(MAXN+1))/b;
            down = a[i]+down*(MAXN+1) - ret.a[i]*b;
        }
        ret.len = len;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
        return ret;
    }
    int BigNum::operator%(const int &b) const {
        int i,d = 0;
        for(i = len - 1;i >= 0;i--) d = ((d*(MAXN+1))%b+a[i])%b;
        return d;
    }
    BigNum BigNum::operator^(const int &n) const{
        BigNum t,ret(1);
        int i;
        if(n < 0) exit(-1);
        if(n == 0) return 1;
        if(n == 1) return *this;
        int m = n;
        while(m > 1) {
            t = *this;
            for(i = 1;(i<<1) <= m;i<<=1) t = t*t;
            m -= i;
            ret = ret*t;
            if(m == 1) ret = ret*(*this);
        }
        return ret;
    }
    bool BigNum::operator>(const BigNum &T) const {
        int ln;
        if(len > T.len) return true;
        else if(len == T.len) {
            ln = len - 1;
            while(a[ln] == T.a[ln] && ln >= 0) ln--;
            if(ln >= 0 && a[ln] > T.a[ln]) return true;
            else return false;
        }
        else return false;
    }
    bool BigNum::operator>(const int &t) const {
        BigNum b(t);
        return *this>b;
    }
    void BigNum::print() {
        int i;
        printf("%d",a[len - 1]);
        for(i = len - 2;i >= 0;i--) printf("%04d",a[i]);
        printf("
    ");
    }
    BigNum f[110];
    int main() {
        f[0] = 1;
        for(int i = 1;i <= 100;i++) f[i] = f[i-1]*(4*i-2)/(i+1);
        int n;
        while(scanf("%d",&n) == 1){
            if(n == -1) break;
            f[n].print();
        }
        return 0;
    }
    
    我现在最大的问题就是人蠢而且还懒的一批。
  • 相关阅读:
    lua源码分析 伪索引
    visual studio 插件
    修改Linux内核参数 减少TIME-WAIT
    linux下编译libmysqlclient, 安装mysql-server mysql-client
    编译静态库tinyxml2
    linux下编译lua库
    在Xshell中文件内容显示乱码
    Java中的自增自减
    Integer的缓存机制
    八大基本排序
  • 原文地址:https://www.cnblogs.com/pot-a-to/p/10975485.html
Copyright © 2020-2023  润新知