题目
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import pandas as pd import numpy as np train_full = pd.read_csv( '../zip.train' ,sep = ' ' ,engine = 'c' ,header = None ).values[:, 0 : - 1 ] test_full = pd.read_csv( '../zip.test' ,sep = ' ' ,engine = 'c' ,header = None ).values train = np.vstack((train_full[train_full[:, 0 ] = = 2 ],train_full[train_full[:, 0 ] = = 3 ])) test = np.vstack((test_full[test_full[:, 0 ] = = 2 ],test_full[test_full[:, 0 ] = = 3 ])) train_x = train[:, 1 :] train_y = train[:, 0 ] test_x = test[:, 1 :] test_y = test[:, 0 ] dc = [] from sklearn.linear_model import LinearRegression lrcf = LinearRegression() lrcf.fit(train_x, train_y) dc.append(( 'linear regression' ,lrcf)) from sklearn.neighbors import KNeighborsClassifier for i in [ 1 , 3 , 5 , 7 , 15 ]: knn = KNeighborsClassifier(n_neighbors = i) knn.fit(train_x,train_y) dc.append(( '%d-nearest neighbor' % (i),knn)) def acc(clf,x,y): res = clf.predict(x) if type (clf) = = LinearRegression: res[res> 2.5 ] = 3 res[res< 2.5 ] = 2 n = y.shape[ 0 ] r = res[(res = = y)].shape[ 0 ] return r * 1.0 / n for i in dc: accr = acc(i[ 1 ],test_x,test_y) print '%s: %.5f' % (i[ 0 ],accr) |
结果
linear regression: 0.95879
1-nearest neighbor: 0.97527
3-nearest neighbor: 0.96978
5-nearest neighbor: 0.96978
7-nearest neighbor: 0.96703
15-nearest neighbor: 0.96154