• 10分钟了解 pandas


    10 Minutes to pandas

    英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html

    版本:pandas 0.23.4

    采集日期:2019-01-16

    注:10分钟只够看完,囫囵吞枣。

    参阅:10分钟学pandas

    本文是对 pandas 的简短介绍,主要面向新用户。更加复杂的用法可以在 Cookbook 中查看。

    按惯例导入语句可如下所示:

    In [1]: import pandas as pd
    In [2]: import numpy as np
    In [3]: import matplotlib.pyplot as plt

    创建对象

    请参阅数据结构介绍

    以下将通过传入列表来创建一个 Series 对象,且让 pandas 创建默认的整数索引:

    In [4]: s = pd.Series([1,3,5,np.nan,6,8])
    
    In [5]: s
    Out[5]: 
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64

    以下将通过传入 NumPy 数组来创建一个 DataFrame 对象,同时指定了日期索引和列的标题(Label)。

    In [6]: dates = pd.date_range('20130101', periods=6)
    
    In [7]: dates
    Out[7]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
    
    In [9]: df
    Out[9]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988

    以下将通过传入字典对象来创建一个 DataFrame 对象,字典对象可被转换为类似序列的结构。

    In [10]: df2 = pd.DataFrame({ 'A' : 1.,
       ....:                      'B' : pd.Timestamp('20130102'),
       ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
       ....:                      'D' : np.array([3] * 4,dtype='int32'),
       ....:                      'E' : pd.Categorical(["test","train","test","train"]),
       ....:                      'F' : 'foo' })
       ....: 
    
    In [11]: df2
    Out[11]: 
         A          B    C  D      E    F
    0  1.0 2013-01-02  1.0  3   test  foo
    1  1.0 2013-01-02  1.0  3  train  foo
    2  1.0 2013-01-02  1.0  3   test  foo
    3  1.0 2013-01-02  1.0  3  train  foo

    以上生成的 DataFrame 中,列的 dtypes 属性各不相同。 

    In [12]: df2.dtypes
    Out[12]: 
    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object

    如果正在使用 IPython,列名(以及公共属性)的 tab 键补全功能将会自动启用。下面列出了一部分将会自动补全的属性:

    In [13]: df2.<TAB>
    df2.A                  df2.bool
    df2.abs                df2.boxplot
    df2.add                df2.C
    df2.add_prefix         df2.clip
    df2.add_suffix         df2.clip_lower
    df2.align              df2.clip_upper
    df2.all                df2.columns
    df2.any                df2.combine
    df2.append             df2.combine_first
    df2.apply              df2.compound
    df2.applymap           df2.consolidate
    df2.D

    如上所述,A、B、C 和 D 列都能用 tab 键自动补全。其实 E 也可以,只是为了尽量简洁,其余的属性未被列出罢了。

    查看数据

    请参阅基础知识部分

    以下是查看 DataFrame 中第一行和最后一行数据的方法:

    In [14]: df.head()
    Out[14]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
    In [15]: df.tail(3)
    Out[15]: 
                       A         B         C         D
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988

    以下方法将把索引、列和底层的 NumPy 数据显示出来:

    In [16]: df.index
    Out[16]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [17]: df.columns
    Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
    
    In [18]: df.values
    Out[18]: 
    array([[ 0.4691, -0.2829, -1.5091, -1.1356],
           [ 1.2121, -0.1732,  0.1192, -1.0442],
           [-0.8618, -2.1046, -0.4949,  1.0718],
           [ 0.7216, -0.7068, -1.0396,  0.2719],
           [-0.425 ,  0.567 ,  0.2762, -1.0874],
           [-0.6737,  0.1136, -1.4784,  0.525 ]])

    describe() 将显示数据的统计信息速览。

    In [19]: df.describe()
    Out[19]: 
                  A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.073711 -0.431125 -0.687758 -0.233103
    std    0.843157  0.922818  0.779887  0.973118
    min   -0.861849 -2.104569 -1.509059 -1.135632
    25%   -0.611510 -0.600794 -1.368714 -1.076610
    50%    0.022070 -0.228039 -0.767252 -0.386188
    75%    0.658444  0.041933 -0.034326  0.461706
    max    1.212112  0.567020  0.276232  1.071804

    下面对数据作转置:

    In [20]: df.T
    Out[20]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

    按某个坐标轴向(这里是列)进行排序:

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                       D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690

    以下按值进行排序:

    In [22]: df.sort_values(by='B')
    Out[22]: 
                       A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401

    选取数据(Selection)

    注意:虽然用于数据选取和赋值的标准 Python / Numpy 表达式比较直观且可用于交互模式,但对于生产代码还是建议采用经过优化的 pandas 数据访问方法:.at、.iat、.loc和.iloc。

    请参阅如何进行索引的文档:进行索引及选取数据 、多重索引 / 高级索引

    数据读取

    下面选取一列数据,这将生成一个 Series 对象,等效于 df.A:

    In [23]: df['A']
    Out[23]: 
    2013-01-01    0.469112
    2013-01-02    1.212112
    2013-01-03   -0.861849
    2013-01-04    0.721555
    2013-01-05   -0.424972
    2013-01-06   -0.673690
    Freq: D, Name: A, dtype: float64

    下面通过 [] 选取数据,这会对数据行进行切片。

    In [24]: df[0:3]
    Out[24]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    
    In [25]: df['20130102':'20130104']
    Out[25]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    用标题选取数据

    详情请参阅用标题查询数据

    以下利用标题获取断面数据(cross section):

    In [26]: df.loc[dates[0]]
    Out[26]: 
    A    0.469112
    B   -0.282863
    C   -1.509059
    D   -1.135632
    Name: 2013-01-01 00:00:00, dtype: float64

    用标题按多个轴向选取数据:

    In [27]: df.loc[:,['A','B']]
    Out[27]: 
                       A         B
    2013-01-01  0.469112 -0.282863
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    2013-01-06 -0.673690  0.113648

    下面将显示按标题选取的切片数据,两边端点的数据也会包含在内:

    In [28]: df.loc['20130102':'20130104',['A','B']]
    Out[28]: 
                       A         B
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771

    降低返回对象的数据维度:

    In [29]: df.loc['20130102',['A','B']]
    Out[29]: 
    A    1.212112
    B   -0.173215
    Name: 2013-01-02 00:00:00, dtype: float64

    以下将获取实际数据(scalar )值:

    In [30]: df.loc[dates[0],'A']
    Out[30]: 0.46911229990718628

    下面将快速读取实际数据值(与上一个方法等效):

    In [31]: df.at[dates[0],'A']
    Out[31]: 0.46911229990718628

    用位置选取数据

    详情请参阅用位置选取数据

    以下用整数参数表示的位置选取数据:

    In [32]: df.iloc[3]
    Out[32]: 
    A    0.721555
    B   -0.706771
    C   -1.039575
    D    0.271860
    Name: 2013-01-04 00:00:00, dtype: float64

     用整数表示的切片选取数据,与 numpy / python 的做法类似:

    In [33]: df.iloc[3:5,0:2]
    Out[33]: 
                       A         B
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020

    用整数表示的位置列表选取数据,类似于 numpy / python 的风格:

    In [34]: df.iloc[[1,2,4],[0,2]]
    Out[34]: 
                       A         C
    2013-01-02  1.212112  0.119209
    2013-01-03 -0.861849 -0.494929
    2013-01-05 -0.424972  0.276232

    以下明确指定了行切片:

    In [35]: df.iloc[1:3,:]
    Out[35]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

    明确指定了列切片:

    In [36]: df.iloc[:,1:3]
    Out[36]: 
                       B         C
    2013-01-01 -0.282863 -1.509059
    2013-01-02 -0.173215  0.119209
    2013-01-03 -2.104569 -0.494929
    2013-01-04 -0.706771 -1.039575
    2013-01-05  0.567020  0.276232
    2013-01-06  0.113648 -1.478427

    明确要求读取某一项数据值:

    In [37]: df.iloc[1,1]
    Out[37]: -0.17321464905330858

    快速读取某一项数据(与上一方法等效):

    In [38]: df.iat[1,1]
    Out[38]: -0.17321464905330858

    布尔索引

    以下利用某一列的值选取数据。

    In [39]: df[df.A > 0]
    Out[39]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    下面从 DataFrame 中选取符合某个布尔条件的值。

    In [40]: df[df > 0]
    Out[40]: 
                       A         B         C         D
    2013-01-01  0.469112       NaN       NaN       NaN
    2013-01-02  1.212112       NaN  0.119209       NaN
    2013-01-03       NaN       NaN       NaN  1.071804
    2013-01-04  0.721555       NaN       NaN  0.271860
    2013-01-05       NaN  0.567020  0.276232       NaN
    2013-01-06       NaN  0.113648       NaN  0.524988
    Using the isin() method for filtering:

    利用 isin() 方法过滤数据:

    In [41]: df2 = df.copy()
    
    In [42]: df2['E'] = ['one', 'one','two','three','four','three']
    
    In [43]: df2
    Out[43]: 
                       A         B         C         D      E
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
    
    In [44]: df2[df2['E'].isin(['two','four'])]
    Out[44]: 
                       A         B         C         D     E
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

    赋值(Setting)

    赋值一列新数据时,将会自动根据索引进行数据匹配(align)。

    In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
    
    In [46]: s1
    Out[46]: 
    2013-01-02    1
    2013-01-03    2
    2013-01-04    3
    2013-01-05    4
    2013-01-06    5
    2013-01-07    6
    Freq: D, dtype: int64
    
    In [47]: df['F'] = s1

    根据标题赋值:

    In [48]: df.at[dates[0],'A'] = 0

    根据位置赋值:

    In [49]: df.iat[0,1] = 0

    用 NumPy 数组赋值:

    In [50]: df.loc[:,'D'] = np.array([5] * len(df))

    上述赋值操作的结果将如下所示。

    In [51]: df
    Out[51]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
    2013-01-05 -0.424972  0.567020  0.276232  5  4.0
    2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

    以下是带有 where 操作的赋值。

    In [52]: df2 = df.copy()
    
    In [53]: df2[df2 > 0] = -df2
    
    In [54]: df2
    Out[54]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
    2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
    2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
    2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
    2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
    2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

    缺失数据(Missing Data)

    pandas 主要采用 np.nan 表示缺失数据。 在计算过程中,默认不会涵盖这类值。请参阅缺失数据部分

    重建索引操作可以修改、添加、删除指定轴向上的索引,并会返回数据的副本。

    In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
    
    In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
    
    In [57]: df1
    Out[57]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

    以下将删除所有包含缺失数据的行。

    In [58]: df1.dropna(how='any')
    Out[58]: 
                       A         B         C  D    F    E
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

    下面将给缺失数据填入值。

    In [59]: df1.fillna(value=5)
    Out[59]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

    以下将获取数据是否为 nan 的布尔值。

    In [60]: pd.isna(df1)
    Out[60]: 
                    A      B      C      D      F      E
    2013-01-01  False  False  False  False   True  False
    2013-01-02  False  False  False  False  False  False
    2013-01-03  False  False  False  False  False   True
    2013-01-04  False  False  False  False  False   True

    运算

    请参阅二元运算的基础知识

    统计运算

    运算通常都不涉及缺失数据。

    以下将执行描述性统计(descriptive statistic):

    In [61]: df.mean()
    Out[61]: 
    A   -0.004474
    B   -0.383981
    C   -0.687758
    D    5.000000
    F    3.000000
    dtype: float64

    下面按另一轴向进行同样的统计:

    In [62]: df.mean(1)
    Out[62]: 
    2013-01-01    0.872735
    2013-01-02    1.431621
    2013-01-03    0.707731
    2013-01-04    1.395042
    2013-01-05    1.883656
    2013-01-06    1.592306
    Freq: D, dtype: float64

    以下将对多个对象进行运算,他们维数不同且需要做数据匹配。并且 pandas 还会自动沿着指定维度将运算传递下去(broadcast)。

    In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
    
    In [64]: s
    Out[64]: 
    2013-01-01    NaN
    2013-01-02    NaN
    2013-01-03    1.0
    2013-01-04    3.0
    2013-01-05    5.0
    2013-01-06    NaN
    Freq: D, dtype: float64
    
    In [65]: df.sub(s, axis='index')
    Out[65]: 
                       A         B         C    D    F
    2013-01-01       NaN       NaN       NaN  NaN  NaN
    2013-01-02       NaN       NaN       NaN  NaN  NaN
    2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
    2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
    2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
    2013-01-06       NaN       NaN       NaN  NaN  NaN

    Apply

    以下将对数据应用多个函数:

    In [66]: df.apply(np.cumsum)
    Out[66]: 
                       A         B         C   D     F
    2013-01-01  0.000000  0.000000 -1.509059   5   NaN
    2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
    2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
    2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
    2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
    2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
    
    In [67]: df.apply(lambda x: x.max() - x.min())
    Out[67]: 
    A    2.073961
    B    2.671590
    C    1.785291
    D    0.000000
    F    4.000000
    dtype: float64

    值的分布情况(Histogram)

    更多信息请参阅分布和离散度

    In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
    
    In [69]: s
    Out[69]: 
    0    4
    1    2
    2    1
    3    2
    4    6
    5    4
    6    4
    7    6
    8    4
    9    4
    dtype: int64
    
    In [70]: s.value_counts()
    Out[70]: 
    4    5
    6    2
    2    2
    1    1
    dtype: int64

    字符串方法

    Series 在 str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,下面的代码片段给出了演示。 请注意,str 中的模式匹配通常默认使用正则表达式(在某些情况下一定会使用)。更多信息请参阅 向量化的字符串方法.。

    In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    
    In [72]: s.str.lower()
    Out[72]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object

    数据合并(merge)

    合并(concat)

    pandas 提供了多种数据合并手段,在 join / merge 类操作时,可以轻松地将 Series、DataFrame、Panel 对象与多种索引设置逻辑、相关代数函数组合在一起使用。

    请参阅数据合并

    下面用 concat() 函数将多个 pandas 对象拼接在一起。

    In [73]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [74]: df
    Out[74]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    
    # break it into pieces
    In [75]: pieces = [df[:3], df[3:7], df[7:]]
    
    In [76]: pd.concat(pieces)
    Out[76]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495

    连接(join)

    这是 SQL 风格的合并。请参阅数据库风格的连接操作

    In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    
    In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    
    In [79]: left
    Out[79]: 
       key  lval
    0  foo     1
    1  foo     2
    
    In [80]: right
    Out[80]: 
       key  rval
    0  foo     4
    1  foo     5
    
    In [81]: pd.merge(left, right, on='key')
    Out[81]: 
       key  lval  rval
    0  foo     1     4
    1  foo     1     5
    2  foo     2     4
    3  foo     2     5

     下面给出另一个例子:

    In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
    
    In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
    
    In [84]: left
    Out[84]: 
       key  lval
    0  foo     1
    1  bar     2
    
    In [85]: right
    Out[85]: 
       key  rval
    0  foo     4
    1  bar     5
    
    In [86]: pd.merge(left, right, on='key')
    Out[86]: 
       key  lval  rval
    0  foo     1     4
    1  bar     2     5

    追加(append)

    向 DataFrame 添加数据行。参见添加数据

    In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
    
    In [88]: df
    Out[88]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    
    In [89]: s = df.iloc[3]
    
    In [90]: df.append(s, ignore_index=True)
    Out[90]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    8  1.453749  1.208843 -0.080952 -0.264610

    分组(group)

    通过分组操作要完成的是涉及以下一个或多个步骤的操作过程:

    • 根据某些条件将数据拆分到多个组中
    • 对每组数据单独应用某个函数
    • 将结果并入某个数据结构中

    参见分组操作

    In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
       ....:                           'foo', 'bar', 'foo', 'foo'],
       ....:                    'B' : ['one', 'one', 'two', 'three',
       ....:                           'two', 'two', 'one', 'three'],
       ....:                    'C' : np.random.randn(8),
       ....:                    'D' : np.random.randn(8)})
       ....: 
    
    In [92]: df
    Out[92]: 
         A      B         C         D
    0  foo    one -1.202872 -0.055224
    1  bar    one -1.814470  2.395985
    2  foo    two  1.018601  1.552825
    3  bar  three -0.595447  0.166599
    4  foo    two  1.395433  0.047609
    5  bar    two -0.392670 -0.136473
    6  foo    one  0.007207 -0.561757
    7  foo  three  1.928123 -1.623033

     下面先执行分组,再对结果调用 sum()  函数。

    In [93]: df.groupby('A').sum()
    Out[93]: 
                C        D
    A                     
    bar -2.802588  2.42611
    foo  3.146492 -0.63958

    先根据多个数据列进行分组操作,形成多级索引,然后还能再调用 sum 函数。

    In [94]: df.groupby(['A','B']).sum()
    Out[94]: 
                      C         D
    A   B                        
    bar one   -1.814470  2.395985
        three -0.595447  0.166599
        two   -0.392670 -0.136473
    foo one   -1.195665 -0.616981
        three  1.928123 -1.623033
        two    2.414034  1.600434

    重塑(Reshape)

    请参阅建立多级索引重塑

    压缩(Stack)

    In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
       ....:                      'foo', 'foo', 'qux', 'qux'],
       ....:                     ['one', 'two', 'one', 'two',
       ....:                      'one', 'two', 'one', 'two']]))
       ....: 
    
    In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
    
    In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
    
    In [98]: df2 = df[:4]
    
    In [99]: df2
    Out[99]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230

    stack() 方法会“压缩” DataFrame 数据列的层级。

    In [100]: stacked = df2.stack()
    
    In [101]: stacked
    Out[101]: 
    first  second   
    bar    one     A    0.029399
                   B   -0.542108
           two     A    0.282696
                   B   -0.087302
    baz    one     A   -1.575170
                   B    1.771208
           two     A    0.816482
                   B    1.100230
    dtype: float64

    针对“已压缩”的 DataFrame 或 Series(带有 MultiIndex 作 index ),stack() 的逆操作是 unstack(),默认情况下将取消最后一级压缩操作:

    In [102]: stacked.unstack()
    Out[102]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230
    
    In [103]: stacked.unstack(1)
    Out[103]: 
    second        one       two
    first                      
    bar   A  0.029399  0.282696
          B -0.542108 -0.087302
    baz   A -1.575170  0.816482
          B  1.771208  1.100230
    
    In [104]: stacked.unstack(0)
    Out[104]: 
    first          bar       baz
    second                      
    one    A  0.029399 -1.575170
           B -0.542108  1.771208
    two    A  0.282696  0.816482
           B -0.087302  1.100230

    数据透视表(Pivot Table)

    请参阅数据透视表

    In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
       .....:                    'B' : ['A', 'B', 'C'] * 4,
       .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
       .....:                    'D' : np.random.randn(12),
       .....:                    'E' : np.random.randn(12)})
       .....: 
    
    In [106]: df
    Out[106]: 
            A  B    C         D         E
    0     one  A  foo  1.418757 -0.179666
    1     one  B  foo -1.879024  1.291836
    2     two  C  foo  0.536826 -0.009614
    3   three  A  bar  1.006160  0.392149
    4     one  B  bar -0.029716  0.264599
    5     one  C  bar -1.146178 -0.057409
    6     two  A  foo  0.100900 -1.425638
    7   three  B  foo -1.035018  1.024098
    8     one  C  foo  0.314665 -0.106062
    9     one  A  bar -0.773723  1.824375
    10    two  B  bar -1.170653  0.595974
    11  three  C  bar  0.648740  1.167115

    由上述数据生成数据透视表是非常简单的。

    In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
    Out[107]: 
    C             bar       foo
    A     B                    
    one   A -0.773723  1.418757
          B -0.029716 -1.879024
          C -1.146178  0.314665
    three A  1.006160       NaN
          B       NaN -1.035018
          C  0.648740       NaN
    two   A       NaN  0.100900
          B -1.170653       NaN
          C       NaN  0.536826

    时间 Series

    为了能在改变采样频率时执行重采样操作(例如将每秒数据转为5分钟数据),pandas 提供了简单、强大且高效的功能。 这在财务应用中非常常见,但不仅限于此。请参阅时间 Series 

    In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
    
    In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
    
    In [110]: ts.resample('5Min').sum()
    Out[110]: 
    2012-01-01    25083
    Freq: 5T, dtype: int64

    时区的表示方式:

    In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
    
    In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
    
    In [113]: ts
    Out[113]: 
    2012-03-06    0.464000
    2012-03-07    0.227371
    2012-03-08   -0.496922
    2012-03-09    0.306389
    2012-03-10   -2.290613
    Freq: D, dtype: float64
    
    In [114]: ts_utc = ts.tz_localize('UTC')
    
    In [115]: ts_utc
    Out[115]: 
    2012-03-06 00:00:00+00:00    0.464000
    2012-03-07 00:00:00+00:00    0.227371
    2012-03-08 00:00:00+00:00   -0.496922
    2012-03-09 00:00:00+00:00    0.306389
    2012-03-10 00:00:00+00:00   -2.290613
    Freq: D, dtype: float64

    以下将转换为其他时区:

    In [116]: ts_utc.tz_convert('US/Eastern')
    Out[116]: 
    2012-03-05 19:00:00-05:00    0.464000
    2012-03-06 19:00:00-05:00    0.227371
    2012-03-07 19:00:00-05:00   -0.496922
    2012-03-08 19:00:00-05:00    0.306389
    2012-03-09 19:00:00-05:00   -2.290613
    Freq: D, dtype: float64

    各种时间间隔(Span)表示方式之间的转换:

    In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
    
    In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
    
    In [119]: ts
    Out[119]: 
    2012-01-31   -1.134623
    2012-02-29   -1.561819
    2012-03-31   -0.260838
    2012-04-30    0.281957
    2012-05-31    1.523962
    Freq: M, dtype: float64
    
    In [120]: ps = ts.to_period()
    
    In [121]: ps
    Out[121]: 
    2012-01   -1.134623
    2012-02   -1.561819
    2012-03   -0.260838
    2012-04    0.281957
    2012-05    1.523962
    Freq: M, dtype: float64
    
    In [122]: ps.to_timestamp()
    Out[122]: 
    2012-01-01   -1.134623
    2012-02-01   -1.561819
    2012-03-01   -0.260838
    2012-04-01    0.281957
    2012-05-01    1.523962
    Freq: MS, dtype: float64

    在时间段(Period)和时间戳(Timestamp)之间进行转换,可以使用一些方便的算术运算函数。 在下面的示例中,将用11月作为年度结束的按季度结算频率转换为用每季度结束次月的上午9点作为按季度结算频率:

    In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
    
    In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
    
    In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
    
    In [126]: ts.head()
    Out[126]: 
    1990-03-01 09:00   -0.902937
    1990-06-01 09:00    0.068159
    1990-09-01 09:00   -0.057873
    1990-12-01 09:00   -0.368204
    1991-03-01 09:00   -1.144073
    Freq: H, dtype: float64

    分类(Categorical)

    pandas 可在 DataFrame 中加入分类信息。完整的文档请参阅分类简介和 API 文档

    In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

    下面将 raw_grade 转换为 category 数据类型。

    In [128]: df["grade"] = df["raw_grade"].astype("category")
    
    In [129]: df["grade"]
    Out[129]: 
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a, b, e]

    下面将类别重命名为更有意义的名字(原地给 Series.cat.categories 赋值!)。

    In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

    对类别重新排序并同时把类别补全(Series.cat 中的方法默认返回一个新 Series 对象)。

    In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    
    In [132]: df["grade"]
    Out[132]: 
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad, bad, medium, good, very good]

    以下排序是按类别的顺序进行的,而不是按照单词的顺序。

    In [133]: df.sort_values(by="grade")
    Out[133]: 
       id raw_grade      grade
    5   6         e   very bad
    1   2         b       good
    2   3         b       good
    0   1         a  very good
    3   4         a  very good
    4   5         a  very good

    按类别分组时,没有数据的类别也会显示出来。

    In [134]: df.groupby("grade").size()
    Out[134]: 
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64

    绘制图表(Plot)

    请参阅绘制图表的文档。

    In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    
    In [136]: ts = ts.cumsum()
    
    In [137]: ts.plot()
    Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f213444c048>

    在 DataFrame 中,用 plot() 方法绘制所有带标题的列非常方便:

    In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
       .....:                   columns=['A', 'B', 'C', 'D'])
       .....: 
    
    In [139]: df = df.cumsum()
    
    In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
    Out[140]: <matplotlib.legend.Legend at 0x7f212489a780>

    输入输出数据

    CSV

    下面写入为 csv 文件:

    In [141]: df.to_csv('foo.csv')

    下面从 csv 文件读取数据:

    In [142]: pd.read_csv('foo.csv')
    Out[142]: 
         Unnamed: 0          A          B         C          D
    0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ..          ...        ...        ...       ...        ...
    993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 5 columns]

    HDF5

    读写 HDF 存储文件

    下面写入为 HDF5 存储文件。

    In [143]: df.to_hdf('foo.h5','df')

    从 HDF5 存储文件读取数据。

    In [144]: pd.read_hdf('foo.h5','df')
    Out[144]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]

    Excel

     读写 Excel 文件。

    以下写入为 Excel 文件。

    In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

    从 Excel 文件读取数据。

    In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
    Out[146]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]

    答疑(Gotcha)

    当执行某项操作时,或许会出现类似以下异常情况:

    >>> if pd.Series([False, True, False]):
        print("I was true")
    Traceback
        ...
    ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

    详细的解释及对策请参阅比较操作

     另请参阅答疑

  • 相关阅读:
    死循环(endless loop)
    while循环和do-while循环语句
    99乘法表(for循环嵌套)
    代码块和作用域
    Break语句和Continue语句
    习题两则的简化(利用for循环)
    for循环语句
    条件判断语句(if-else)
    习题两则(自增操作符和数据类型相关知识点)
    字符集、编码和字符串
  • 原文地址:https://www.cnblogs.com/popapa/p/pandas_10mins.html
Copyright © 2020-2023  润新知