• scrapy爬取京东


    京东对于爬虫来说太友好了,不向天猫跟淘宝那样的丧心病狂,本次爬虫来爬取下京东,研究下京东的数据是如何获取的。

    1 # 目标网址: jd.com
    2 # 关键字: 手机(任意关键字,本文以手机入手)

    得到url如下:

    1 https://search.jd.com/Search?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&wq=%E6%89%8B%E6%9C%BA&pvid=c53afe790a6f440f9adf7edcaabd8703

    往下拖拽的时候就会发现很明显部分数据是通过Ajax动态获取的。那既然设计到动态数据没啥好说的抓下包。不过在抓包之前不妨先翻几页看看url有没有什么变化。

     点击下一页

    https://search.jd.com/Search?keyword=手机BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=手机BA&cid2=653&cid3=655&page=3&s=60&click=0  # 关键信息page出现了

     在点回第一页

    https://search.jd.com/Search?keyword=手机BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=手机BA&cid2=653&cid3=655&page=1&s=1&click=0   # 这个时候其实规律就出来了

     把page改成2试一下,结果出来的数据跟第一页的一样,page=4跟page=3出来的数据也是一样,那其实很好说了,每次打开新的页面的时候只需要确保page+2即可。

    抓下包,获取下动态的数据:

    拿到url访问下这个页面,结果却跳回了首页,很明显参数不够。看了几篇博客才知道原来是要携带referer信息的。

    referer地址也很明显就是本页面的url。再来看看这些动态数据的url该怎么构造,多访问几个页面看看规律。

    1 第一页:  https://search.jd.com/s_new.php?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=2&s=30&scrolling=y&log_id=1547824670.57168&tpl=3_M&show_items=7643003,5089235,100000822981,5089273,5821455,7437788,5089225,100001172674,8894451,7081550,100000651175,6946605,8895275,7437564,100000349372,100002293114,8735304,100000820311,6949475,100000773875,7357933,100000971366,8638898,7694047,8790521,7479912,7651927,7686683,100001464948,100000650837
    2 
    3 第二页:  https://search.jd.com/s_new.php?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=4&s=86&scrolling=y&log_id=1547824734.86451&tpl=3_M&show_items=5283387,7428766,6305258,7049459,8024543,6994622,5826236,3133841,6577511,100000993102,5295423,5963066,8717360,100000400014,7425622,7621213,100000993265,100002727566,28331229415,2321948,6737464,7029523,34250730122,3133811,36121534193,11794447957,5159244,28751842981,100001815307,35175013603
    4
    5 第三页: https://search.jd.com/s_new.php?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=6&s=140&scrolling=y&log_id=1547824799.50167&tpl=3_M&show_items=3889169,4934609,5242942,4270017,32399556682,7293054,28209134950,100000993265,32796441851,5980401,6176077,27424489997,27493450925,5424574,100000015166,6840907,30938386315,12494304703,7225861,34594345130,29044581673,28502299808,4577217,8348845,31426728970,6425153,31430342752,15501730722,100000322417,5283377

     仔细观察关键字page,第一页page=2,第二页page=4,第三页page=6,后面的 show_items= 这里的参数一一直在变化,这是些什么鬼?

    查看博客才知,原来啊京东每一页由60条数据,前30条直接显示出来,后30条数据是动态加载的,show_items=后面的这些数字其实是前30条数据的每一条pid在html源码中可以直接获取到。

     

    OK,总结一下,访问首页前30条数据的url是这个。

    https://search.jd.com/Search?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=1&s=1&click=0

     后30条动态的数据是这个

    https://search.jd.com/s_new.php?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=2&s=30&scrolling=y&log_id=1547825445.77300&tpl=3_M&show_items=7643003,5089235,100000822981,5089273,5821455,7437788,5089225,100001172674,8894451,7081550,100000651175,6946605,8895275,7437564,100000349372,100002293114,8735304,100000820311,6949475,100000773875,7357933,100000971366,8638898,8790521,7479912,7651927,7686683,100001464948,100000650837,1861091

     且访问后30条的时候要带上referer以及pid,在获取下一页的时候只需要page+2即可。就可以动手整了。


    目录结构:

    jdspider.py

      1 import scrapy
      2 from ..items import JdItem
      3 
      4 
      5 class JdSpider(scrapy.Spider):
      6     name = 'jd'
      7     allowed_domains = ['jd.com']  # 有的时候写个www.jd.com会导致search.jd.com无法爬取
      8     keyword = "手机"
      9     page = 1
     10     url = 'https://search.jd.com/Search?keyword=%s&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%s&cid2=653&cid3=655&page=%d&click=0'
     11     next_url = 'https://search.jd.com/s_new.php?keyword=%s&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%s&cid2=653&cid3=655&page=%d&scrolling=y&show_items=%s'
     12 
     13     def start_requests(self):
     14         yield scrapy.Request(self.url % (self.keyword, self.keyword, self.page), callback=self.parse)
     15 
     16     def parse(self, response):
     17         """
     18         爬取每页的前三十个商品,数据直接展示在原网页中
     19         :param response:
     20         :return:
     21         """
     22         ids = []
     23         for li in response.xpath('//*[@id="J_goodsList"]/ul/li'):
     24             item = JdItem()
     25             title = li.xpath('div/div/a/em/text()').extract_first("")  # 标题
     26             price = li.xpath('div/div/strong/i/text()').extract_first("")  # 价格
     27             p_id = li.xpath('@data-pid').extract_first("")  # id
     28             ids.append(p_id)
     29             url = li.xpath('div/div[@class="p-name p-name-type-2"]/a/@href').extract_first("")  # 需要跟进的链接
     30 
     31             item['title'] = title
     32             item['price'] = price
     33             item['url'] = url
     34             # 给url加上https:
     35             if item['url'].startswith('//'):
     36                 item['url'] = 'https:' + item['url']  # 粗心的同学请注意一定要加上冒号:
     37             elif not item['url'].startswith('https:'):
     38                 item['info'] = None
     39                 yield item
     40                 continue
     41 
     42             yield scrapy.Request(item['url'], callback=self.info_parse, meta={"item": item})
     43 
     44         headers = {'referer': response.url}
     45         # 后三十页的链接访问会检查referer,referer是就是本页的实际链接
     46         # referer错误会跳转到:https://www.jd.com/?se=deny
     47         self.page += 1
     48         yield scrapy.Request(self.next_url % (self.keyword, self.keyword, self.page, ','.join(ids)),
     49                              callback=self.next_parse, headers=headers)
     50 
     51     def next_parse(self, response):
     52         """
     53         爬取每页的后三十个商品,数据展示在一个特殊链接中:url+id(这个id是前三十个商品的id)
     54         :param response:
     55         :return:
     56         """
     57         for li in response.xpath('//li[@class="gl-item"]'):
     58             item = JdItem()
     59             title = li.xpath('div/div/a/em/text()').extract_first("")  # 标题
     60             price = li.xpath('div/div/strong/i/text()').extract_first("")  # 价格
     61             url = li.xpath('div/div[@class="p-name p-name-type-2"]/a/@href').extract_first("")  # 需要跟进的链接
     62             item['title'] = title
     63             item['price'] = price
     64             item['url'] = url
     65 
     66             if item['url'].startswith('//'):
     67                 item['url'] = 'https:' + item['url']  # 粗心的同学请注意一定要加上冒号:
     68             elif not item['url'].startswith('https:'):
     69                 item['info'] = None
     70                 yield item
     71                 continue
     72 
     73             yield scrapy.Request(item['url'], callback=self.info_parse, meta={"item": item})
     74 
     75         if self.page < 200:
     76             self.page += 1
     77             yield scrapy.Request(self.url % (self.keyword, self.keyword, self.page), callback=self.parse)
     78 
     79     def info_parse(self, response):
     80         """
     81         链接跟进,爬取每件商品的详细信息,所有的信息都保存在item的一个子字段info中
     82         :param response:
     83         :return:
     84         """
     85         item = response.meta['item']
     86         item['info'] = {}
     87         name = response.xpath('//div[@class="inner border"]/div[@class="head"]/a/text()').extract_first("")
     88         type = response.xpath('//div[@class="item ellipsis"]/text()').extract_first("")
     89         item['info']['name'] = name
     90         item['info']['type'] = type
     91 
     92         for div in response.xpath('//div[@class="Ptable"]/div[@class="Ptable-item"]'):
     93             h3 = div.xpath('h3/text()').extract_first()
     94             if h3 == '':
     95                 h3 = "未知"
     96             dt = div.xpath('dl/dl/dt/text()').extract()  # 以列表的形式传参给zip()函数
     97             dd = div.xpath('dl/dl/dd[not(@class)]/text()').extract()
     98             item['info'][h3] = {}
     99             for t, d in zip(dt, dd):
    100                 item['info'][h3][t] = d
    101         yield item

     items.py

     1 import scrapy
     2 
     3 
     4 class JdItem(scrapy.Item):
     5     title = scrapy.Field()  # 标题
     6 
     7     price = scrapy.Field()  # 价格
     8 
     9     url = scrapy.Field()  # 商品链接
    10 
    11     info = scrapy.Field()  # 详细信息

     piplines.py

     1 from scrapy.conf import settings
     2 from pymongo import MongoClient
     3 
     4 
     5 class JdphonePipeline(object):
     6     def __init__(self):
     7         # 获取setting中主机名,端口号和集合名
     8         host = settings['MONGODB_HOST']
     9         port = settings['MONGODB_PORT']
    10         dbname = settings['MONGODB_DBNAME']
    11         col = settings['MONGODB_COL']
    12 
    13         # 创建一个mongo实例
    14         client = MongoClient(host=host, port=port)
    15 
    16         # 访问数据库
    17         db = client[dbname]
    18 
    19         # 访问集合
    20         self.col = db[col]
    21 
    22     def process_item(self, item, spider):
    23         data = dict(item)
    24         self.col.insert(data)
    25         return item

     settings.py

     1 USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:23.0) Gecko/20100101 Firefox/23.0'
     2 
     3 ITEM_PIPELINES = {
     4    'jd.pipelines.JdphonePipeline': 300,
     5 }
     6 
     7 # 主机环回地址
     8 MONGODB_HOST = '127.0.0.1'
     9 # 端口号,默认27017
    10 MONGODB_POST = 27017
    11 # 设置数据库名称
    12 MONGODB_DBNAME = 'JingDong'
    13 # 设置集合名称
    14 MONGODB_COL = 'JingDongPhone'
    15 SQL_DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
    16 SQL_DATE_FORMAT = "%Y-%m-%d"

     代码基本上copy了这位博主的代码,只是做了些许的修改。https://www.cnblogs.com/twoice/p/9742732.html

    好吧这次京东的爬虫就到这里,其实关于京东的爬虫网上还有另外一个版本,下次在研究一下。京东是真的对爬虫友好。

  • 相关阅读:
    用html自己开发自己的串口TCP通讯调试软件
    推荐模型PNN: 原理介绍与TensorFlow2.0实现
    推荐模型NeuralCF:原理介绍与TensorFlow2.0实现
    推荐模型DeepCrossing: 原理介绍与TensorFlow2.0实现
    推荐模型AutoRec:原理介绍与TensorFlow2.0实现
    ffmpeg命令的简单使用
    X264的交叉编译
    FDK_AAC交叉编译
    编译lame静态库
    iOS安全清单
  • 原文地址:https://www.cnblogs.com/pontoon/p/10290233.html
Copyright © 2020-2023  润新知