最近看了一篇论文,模型不复杂但是思想很有意思,参考价值非常大。仔细看下去,发现一些细节没有给的很详细(其实主要还是自己太菜,呜呜),思来想去还是有些疑惑。由于导师不是搞这个方向,身边也没有人研究RNN的,忽然间觉得“举目无亲”啊!于是乎,鼓起勇气向论文作者发了封求助邮件。没想到作者很快就很热心的回信了,还分享了github和微信。于是加了大佬的微信,才知道大佬竟然和我同辈人,甚至可能比我还小一些,这篇论文是大佬本科时发的,而研二的我还。。。。不得不感慨这个世界上有的人真的优秀,无论是学识还是为人,庆幸自己能认识这么优秀的一位前辈。大佬不但热心的回答了我很多“幼稚”的问题,还主动提出和我语音帮我讲讲他的整体思路,感激之情溢于言表啊!下面讲一讲收获吧。
1.模型分别学习每个用户的数据,学习完一个用户的数据后,模型保留参数,继续学习下一个用户的数据。这样,一直训练完所有的用户数据。
2.LSTM层的输入只有时序的血压数据,用户其他数据,以及上下文数据,放在最后一层输入,最后通过线性回归得到输出。
3.不同模型的不同维度预测效果对比,这里的模型维度,是指神经网络层的神经元个数。
4.如果想让模型提取不同用户之间互相影响的信息,这时候可以CNN最合适,RNN也可以试试。