• Petrozavodsk Summer Training Camp 2015 Day 2: Xudyh (TooSimple) Contest, Saturday, August 22, 2015 A题


    Problem A.

    Expression Input file: standard input

    Output file: standard output

    Time limit: 1 second

    Memory limit: 64 mebibytes Teacher Mai has n numbers a1, a2, . . . , an and n − 1 operators (each operator is one of ‘+’, ‘-’ or ‘*’) op1, op2, . . . , opn−1, which are arranged in the form a1 op1 a2 op2 a3 . . . an. He wants to erase numbers one by one. In i-th round, there are n + 1 − i numbers remained. He can erase two adjacent numbers and the operator between them, and then put a new number (derived from this one operation) in this position. After n − 1 rounds, there is the only one number remained. The result of this sequence of operations is the last number remained. He wants to know the sum of results of all different sequences of operations. Two sequences of operations are considered different if and only if in one round he chooses different numbers. For example, a possible sequence of operations for 1 + 4 ∗ 6 − 8 ∗ 3 is 1 + 4 ∗ 6 − 8 ∗ 3 → 1 + 4 ∗ (−2) ∗ 3 → 1 + (−8) ∗ 3 → (−7) ∗ 3 → −21. Input First line of the input contains one integer T (1 ≤ T ≤ 20) — number of the test cases. Then T test cases follow. For each test case, the first line contains one number n (2 ≤ n ≤ 100). The second line contains n integers a1, a2, . . . , an (0 ≤ ai ≤ 109 ). The third line contains a string with length n−1 consisting of ‘+’, ‘-’ and ‘*’, which represents the operator sequence. Output For each test case print the answer modulo 109 + 7. Example standard input standard output 2 3 3 2 1 -+ 5 1 4 6 8 3 +*-* 2 999999689

    题目分析:考虑区间dp dp[i][j]表示i到j的所有可能的组合的和, 考虑转移,<i,j>可以由sigam<i,k>&<k,j>转移;

    对于+或-号,dp[i][j]+=(dp[i][k]*fac[j-k]+dp[k+1][j]*fac[j-k-1])*C[k-i][j-i];

    对于*号 dp[i][j]+=(dp[i][k]*dp[k+1][j])*C[k-i][j-i];

     1 #include<bits/stdc++.h>
     2 #define maxn 310
     3 #define M 100
     4 #define LL long long
     5 #define Mod 1000000007 
     6 using namespace std;
     7 LL fac[maxn],C[maxn][maxn],dp[maxn][maxn];
     8 void pre(){
     9     fac[0]=1;
    10     for(int i=1;i<=M;i++){
    11         fac[i]=(fac[i-1]*i)%Mod;
    12     }
    13     C[0][0]=1;
    14     for(int i=1;i<=M;i++){
    15         C[i][i]=C[i][0]=1;
    16         for(int j=1;j<i;j++){
    17             C[i][j]=(C[i-1][j]+C[i-1][j-1])%Mod;
    18         }
    19     }
    20 }
    21 char op[maxn];
    22 LL seg[maxn];
    23 int n,m;
    24 int main(){
    25     pre();
    26     int T;
    27     cin>>T;
    28     while(T--){
    29     cin>>n;
    30     memset(dp,0,sizeof(dp));
    31     for(int i=1;i<=n;i++){
    32         cin>>dp[i][i];
    33     }
    34     cin>>op;
    35     m=strlen(op);
    36     for(int k=1;k<=n;k++){
    37         for(int i=1;i+k<=n;i++){
    38             for(int j=i;j<i+k;j++){
    39                 if(op[j-1]=='*'){
    40                     dp[i][i+k]=(dp[i][i+k]+(((Mod+dp[i][j]*dp[j+1][i+k])%Mod)*C[k-1][j-i])%Mod)%Mod;
    41                 }    
    42                 else if(op[j-1]=='+'){
    43                     dp[i][i+k]=(dp[i][i+k]+(2*Mod+(dp[i][j]*fac[i+k-j-1])%Mod+(dp[j+1][i+k]*fac[j-i])%Mod)*C[k-1][j-i])%Mod;
    44                 }
    45                 else if(op[j-1]=='-'){
    46                     dp[i][i+k]=(dp[i][i+k]+((2*Mod+(dp[i][j]*fac[i+k-j-1])%Mod-(dp[j+1][i+k]*fac[j-i]))%Mod)*C[k-1][j-i])%Mod;
    47                 }
    48             }
    49         }
    50     }
    51     cout<<(dp[1][n]+Mod)%Mod<<endl;
    52     }
    53     return 0;
    54 }
  • 相关阅读:
    Emacs使用gnus收发邮件时nnfolder相关介绍
    emacs 播放mp3
    你真的会写二分查找吗?
    数独的经典case
    MySQL处理千万级数据查询、分页
    Mysql Replication 机制
    redis位图(bitmap)常用命令的解析
    由浅入深了解线程池之源码初探
    BlockingQueue家族成员一览
    由浅入深了解线程池之初识线程池
  • 原文地址:https://www.cnblogs.com/poler/p/7359464.html
Copyright © 2020-2023  润新知