• redis的面试题


    1:使用redis有哪些好处? 

      (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

      (2) 支持丰富数据类型,支持string,list,set,sorted set,hash

      (3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

      (4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

    2:Memcache与Redis的区别都有哪些?

      (1)、存储方式

        Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。

        Redis有部份存在硬盘上,这样能保证数据的持久性。

      (2)、数据支持类型

        Memcache对数据类型支持相对简单。

        Redis有复杂的数据类型。

      (3)、使用底层模型不同

        它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。

        Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

    3:redis常见性能问题和解决方案?

      (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件

      (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

      (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内

      (4) 尽量避免在压力很大的主库上增加从库

      (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...

      这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

    4:redis的并发竞争问题如何解决?

      Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:

    1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。
    2.服务器角度,利用setnx实现锁。
    对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。

    5:redis事物的了解CAS(check-and-set 操作实现乐观锁)?

      和众多其它数据库一样,Redis作为NoSQL数据库也同样提供了事务机制。在Redis中,MULTI/EXEC/DISCARD/WATCH这四个命令是我们实现事务的基石。相信对有关系型数据库开发经验的开发者而言这一概念并不陌生,即便如此,我们还是会简要的列出Redis中事务的实现特征:
          1). 在事务中的所有命令都将会被串行化的顺序执行,事务执行期间,Redis不会再为其它客户端的请求提供任何服务,从而保证了事物中的所有命令被原子的执行。
          2). 和关系型数据库中的事务相比,在Redis事务中如果有某一条命令执行失败,其后的命令仍然会被继续执行。
          3). 我们可以通过MULTI命令开启一个事务,有关系型数据库开发经验的人可以将其理解为"BEGIN TRANSACTION"语句。在该语句之后执行的命令都将被视为事务之内的操作,最后我们可以通过执行EXEC/DISCARD命令来提交/回滚该事务内的所有操作。这两个Redis命令可被视为等同于关系型数据库中的COMMIT/ROLLBACK语句。
          4). 在事务开启之前,如果客户端与服务器之间出现通讯故障并导致网络断开,其后所有待执行的语句都将不会被服务器执行。然而如果网络中断事件是发生在客户端执行EXEC命令之后,那么该事务中的所有命令都会被服务器执行。
          5). 当使用Append-Only模式时,Redis会通过调用系统函数write将该事务内的所有写操作在本次调用中全部写入磁盘。然而如果在写入的过程中出现系统崩溃,如电源故障导致的宕机,那么此时也许只有部分数据被写入到磁盘,而另外一部分数据却已经丢失。Redis服务器会在重新启动时执行一系列必要的一致性检测,一旦发现类似问题,就会立即退出并给出相应的错误提示。此时,我们就要充分利用Redis工具包中提供的redis-check-aof工具,该工具可以帮助我们定位到数据不一致的错误,并将已经写入的部分数据进行回滚。修复之后我们就可以再次重新启动Redis服务器了。

    6、WATCH命令和基于CAS的乐观锁:

          在Redis的事务中,WATCH命令可用于提供CAS(check-and-set)功能。假设我们通过WATCH命令在事务执行之前监控了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,EXEC命令执行的事务都将被放弃,同时返回Null multi-bulk应答以通知调用者事务执行失败。例如,我们再次假设Redis中并未提供incr命令来完成键值的原子性递增,如果要实现该功能,我们只能自行编写相应的代码。其伪码如下:
          val = GET mykey
          val = val + 1
          SET mykey $val
          以上代码只有在单连接的情况下才可以保证执行结果是正确的,因为如果在同一时刻有多个客户端在同时执行该段代码,那么就会出现多线程程序中经常出现的一种错误场景--竞态争用(race condition)。比如,客户端A和B都在同一时刻读取了mykey的原有值,假设该值为10,此后两个客户端又均将该值加一后set回Redis服务器,这样就会导致mykey的结果为11,而不是我们认为的12。为了解决类似的问题,我们需要借助WATCH命令的帮助,见如下代码:
          WATCH mykey
          val = GET mykey
          val = val + 1
          MULTI
          SET mykey $val
          EXEC
          和此前代码不同的是,新代码在获取mykey的值之前先通过WATCH命令监控了该键,此后又将set命令包围在事务中,这样就可以有效的保证每个连接在执行EXEC之前,如果当前连接获取的mykey的值被其它连接的客户端修改,那么当前连接的EXEC命令将执行失败。这样调用者在判断返回值后就可以获悉val是否被重新设置成功。

    7、redis持久化的几种方式

      1、快照(snapshots)

        缺省情况情况下,Redis把数据快照存放在磁盘上的二进制文件中,文件名为dump.rdb。你可以配置Redis的持久化策略,例如数据集中每N秒钟有超过M次更新,就将数据写入磁盘;或者你可以手工调用命令SAVEBGSAVE

    工作原理

    • Redis forks.
    • 子进程开始将数据写到临时RDB文件中。
    • 当子进程完成写RDB文件,用新文件替换老文件。
    • 这种方式可以使Redis使用copy-on-write技术。

      2、AOF

      快照模式并不十分健壮,当系统停止,或者无意中Redis被kill掉,最后写入Redis的数据就会丢失。这对某些应用也许不是大问题,但对于要求高可靠性的应用来说,

      Redis就不是一个合适的选择。
      Append-only文件模式是另一种选择。
      你可以在配置文件中打开AOF模式

      3、虚拟内存方式

      4、diskstore方式

    8、redis的缓存失效策略和主键失效机制

      

    作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略.

      在Redis当中,有生存期的key被称为volatile。在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除。

    1、影响生存时间的一些操作

      生存时间可以通过使用 DEL 命令来删除整个 key 来移除,或者被 SET 和 GETSET 命令覆盖原来的数据,也就是说,修改key对应的value和使用另外相同的key和value来覆盖以后,当前数据的生存时间不同。

       比如说,对一个 key 执行INCR命令,对一个列表进行LPUSH命令,或者对一个哈希表执行HSET命令,这类操作都不会修改 key 本身的生存时间。另一方面,如果使用RENAME对一个 key 进行改名,那么改名后的 key 的生存时间和改名前一样。

      RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key 。 

    2、如何更新生存时间

       可以对一个已经带有生存时间的 key 执行EXPIRE命令,新指定的生存时间会取代旧的生存时间。过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O(1),
       EXPIRE和TTL命令搭配使用,TTL可以查看key的当前生存时间。设置成功返回 1;当 key 不存在或者不能为 key 设置生存时间时,返回 0 。

     最大缓存配置

      在 redis 中,允许用户设置最大使用内存大小

    1
    server.maxmemory

      默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。

    redis 提供 6种数据淘汰策略:

    • volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
    • volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
    • volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
    • allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
    • allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
    • no-enviction(驱逐):禁止驱逐数据

     注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。

    使用策略规则:

    1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru
     2、如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random

    三种数据淘汰策略:

     ttl和random比较容易理解,实现也会比较简单。主要是Lru最近最少使用淘汰策略,设计上会对key 按失效时间排序,然后取最先失效的key进行淘汰

      

  • 相关阅读:
    图解集合5:不正确地使用HashMap引发死循环及元素丢失
    图解集合4:HashMap
    图解集合3:CopyOnWriteArrayList
    图解集合2:LinkedList
    SharePoint PowerShell 修改母版页
    SharePoint PowerShell 启动工作流
    SharePoint REST 服务获取讨论版问题
    SharePoint 前端开发常用的对象之_spPageContextInfo
    SharePoint 读取内容的插件之SharepointPlus
    SharePoint 配置PowerShell任务计划
  • 原文地址:https://www.cnblogs.com/plf112233/p/redis.html
Copyright © 2020-2023  润新知