解析url
scala> import java.net.URL
import java.net.URL
scala> val urlstr="http://www.baidu.com:8899/getUsername?userid=110&sysId=552"
urlstr: String = http://www.baidu.com:8899/getUsername?userid=110&sysId=552
scala> val aa=new URL(urlstr)
aa: java.net.URL = http://www.baidu.com:8899/getUsername?userid=110&sysId=552
scala> aa.getHost
res262: String = www.baidu.com
scala> aa.getPort
res263: Int = 8899
scala> aa.getPath
res264: String = /getUsername
---------------------
[root@host tmpdata]# hdfs dfs -cat /spark/log/web.log(文本两列以空格分割,分表表示访客ID,以及范文URL)
10001 http://www.baidu.com/car
a10001 http://www.baidu.com/book
a10001 http://www.baidu.com/book
a10001 http://www.baidu.com/book
a10001 http://www.baidu.com/music
a10001 http://www.baidu.com/music
a10001 http://www.baidu.com/movie
a10001 http://www.baidu.com/movie
a10001 http://www.baidu.com/movie
a10001 http://www.baidu.com/movie
a10001 http://www.baidu.com/movie
a10001 http://www.baidu.com/yule
a10001 http://www.baidu.com/yule
a10002 http://www.baidu.com/car
a10002 http://www.baidu.com/yule
a10002 http://www.baidu.com/yule
a10002 http://www.baidu.com/book
a10002 http://www.baidu.com/car
a10002 http://www.baidu.com/music
a10002 http://www.baidu.com/car
a10002 http://www.baidu.com/car
a10002 http://www.baidu.com/car
a10002 http://www.baidu.com/movie
a10002 http://www.baidu.com/movie
a10002 http://www.baidu.com/yule
a10002 http://www.baidu.com/yule
scala> import java.net.URL
import java.net.URL
scala> val weblogrdd=sc.textFile("hdfs://localhost:9000/spark/log/web.log")
weblogrdd: org.apache.spark.rdd.RDD[String] = hdfs://localhost:9000/spark/log/web.log MapPartitionsRDD[301] at textFile at <console>:53
scala> weblogrdd.count
res282: Long = 26
scala> val useridrdd=weblogrdd.map(x=>{val aa=x.split(" ");(aa(0),1)})
useridrdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[310] at map at <console>:59
scala> useridrdd.reduceByKey(_+_).collect //每个访客的访问次数
res291: Array[(String, Int)] = Array((10001,1), (a10002,13), (a10001,12))
//以下实现每个访客每个分类的访问次数
scala> weblogrdd.map(_.split(" ")).map(x=>{val url=new URL(x(1));val path=url.getPath.substring(1);(x(0),path)}).map(x=>(x,1)).reduceByKey(_+_).collect
res313: Array[((String, String), Int)] = Array(((a10001,movie),5), ((a10002,movie),2), ((a10002,car),5), ((a10002,music),1), ((a10001,yule),2), ((a10001,book),3), ((a10002,yule),4), ((10001,car),1), ((a10001,music),2), ((a10002,book),1))
语句解析:map(_.split(" ")) 按空格拆分字段
map(x=>{val url=new URL(x(1));val path=url.getPath.substring(1);(x(0),path)}) 获取url的路径,形成新的RDD(访客ID,类别)
map(x=>(x,1)) 以(访客ID,类别)为键生成新的键值对RDD
scala> val redrdd=weblogrdd.map(_.split(" ")).map(x=>{val url=new URL(x(1));val path=url.getPath.substring(1);(x(0),path)}).map(x=>(x,1)).reduceByKey(_+_)
redrdd: org.apache.spark.rdd.RDD[((String, String), Int)] = ShuffledRDD[411] at reduceByKey at <console>:56
scala> redrdd.sortBy(_._2,false).collect
res335: Array[((String, String), Int)] = Array(((a10001,movie),5), ((a10002,car),5), ((a10002,yule),4), ((a10001,book),3), ((a10002,movie),2), ((a10001,yule),2), ((a10001,music),2), ((a10002,music),1), ((10001,car),1), ((a10002,book),1))
scala> val grouprdd=redrdd.groupBy(_._1._2)
grouprdd: org.apache.spark.rdd.RDD[(String, Iterable[((String, String), Int)])] = ShuffledRDD[431] at groupBy at <console>:58
scala> grouprdd.collect
res345: Array[(String, Iterable[((String, String), Int)])] = Array((car,CompactBuffer(((a10002,car),5), ((10001,car),1))), (movie,CompactBuffer(((a10001,movie),5), ((a10002,movie),2))), (book,CompactBuffer(((a10001,book),3), ((a10002,book),1))), (music,CompactBuffer(((a10002,music),1), ((a10001,music),2))), (yule,CompactBuffer(((a10001,yule),2), ((a10002,yule),4))))
scala> grouprdd.mapValues(_.toList.sortBy(_._2).reverse.take(1)).collect
res351: Array[(String, List[((String, String), Int)])] = Array((car,List(((a10002,car),5))), (movie,List(((a10001,movie),5))), (book,List(((a10001,book),3))), (music,List(((a10001,music),2))), (yule,List(((a10002,yule),4))))
-----------------------
Operations which can cause a shuffle include repartition operations like repartition
and coalesce
, ‘ByKey operations (except for counting) likegroupByKey
and reduceByKey
, and join operations like cogroup
and join
.
可能导致洗牌的操作包括重新划分操作,如 repartition
和coalesce
,' ByKey操作(除了计数操作),如groupbykey和reduceByKey,以及联合操作,如联合组和连接。
Datasets and DataFrames
A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map
, flatMap
, filter
, etc.). The Dataset API is available in Scala and Java. Python does not have the support for the Dataset API. But due to Python’s dynamic nature, many of the benefits of the Dataset API are already available (i.e. you can access the field of a row by name naturally row.columnName
). The case for R is similar.
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of Row
s. In the Scala API, DataFrame
is simply a type alias of Dataset[Row]
. While, in Java API, users need to use Dataset<Row>
to represent a DataFrame
.
Throughout this document, we will often refer to Scala/Java Datasets of Row
s as DataFrames.
----------------------
spark作为一个分布式计算系统,可以替代mapreduce,目前来说无法代替hadoop,spark已经内置了scala
scala也有flatmap,但是针对集合进行处理;spark是对分布式RDD进行处理,操作对象不一样
resilient distributed dataset (RDD)
There are two ways to create RDDs: parallelizing an existing collection in your driver program, or referencing a dataset in an external storage system, such as a shared filesystem, HDFS, HBase, or any data source offering a Hadoop InputFormat.
All of Spark’s file-based input methods, including textFile
, support running on directories, compressed files, and wildcards as well. For example, you can use textFile("/my/directory")
, textFile("/my/directory/*.txt")
, and textFile("/my/directory/*.gz")
--------------------------
scala> val r1=sc.parallelize(List(List("ad d ge","tt g a"),List("j h k e","t eqe gg")))
r1: org.apache.spark.rdd.RDD[List[String]] = ParallelCollectionRDD[475] at parallelize at <console>:54
scala> r1.flatMap(_.flatMap(_.split(" "))).collect
res433: Array[String] = Array(ad, d, ge, tt, g, a, j, h, k, e, t, eqe, gg)
RDD(k,v) 才能join操作
scala> rdd100 union rdd101
res448: org.apache.spark.rdd.RDD[String] = UnionRDD[501] at union at <console>:61
scala> val gg=rdd100 union rdd101
gg: org.apache.spark.rdd.RDD[String] = UnionRDD[502] at union at <console>:60
scala> gg.collect
res449: Array[String] = Array(ad, d, ge, tt, g, a, j, h, k, e, t, eqe, gg, ddag, 5, agage, gg)
scala> rdd100.union(rdd101).collect
res450: Array[String] = Array(ad, d, ge, tt, g, a, j, h, k, e, t, eqe, gg, ddag, 5, agage, gg)
------------------------------------
scala> val rdd110=sc.makeRDD(Array(("wang",10),("zhang",5),("wang",8),("li",800),("wang",10)))
rdd110: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[510] at makeRDD at <console>:54
scala> rdd110.reduceByKey(_+_).collect
res455: Array[(String, Int)] = Array((zhang,5), (li,800), (wang,28))
scala> rdd110.groupByKey().map({case(x,y)=>(x,y.sum)}).collect
res460: Array[(String, Int)] = Array((zhang,5), (li,800), (wang,28))
scala> rdd110.groupByKey().map(x=>(x._1,x._2.sum)).collect
res484: Array[(String, Int)] = Array((zhang,5), (li,800), (wang,28))
scala> rdd110.groupByKey().mapValues(_.sum).collect
res466: Array[(String, Int)] = Array((zhang,5), (li,800), (wang,28))
def mapValues[U](f: Int => U): org.apache.spark.rdd.RDD[(String, U)]
对键值对每个value都应用一个函数,但是,key不会发生变化。
scala> rdd110.groupByKey().collect
res474: Array[(String, Iterable[Int])] = Array((zhang,CompactBuffer(5)), (li,CompactBuffer(800)), (wang,CompactBuffer(10, 8, 10)))
scala> rdd110.groupByKey().mapValues(_.sum).collect
res475: Array[(String, Int)] = Array((zhang,5), (li,800), (wang,28))
scala> rdd110.collect
res473: Array[(String, Int)] = Array((wang,10), (zhang,5), (wang,8), (li,800), (wang,10))
scala> rdd110.mapValues(_+10).collect
res472: Array[(String, Int)] = Array((wang,20), (zhang,15), (wang,18), (li,810), (wang,20))
-------------------------------------------------
Foreach与ForeachPartition都是在每个partition中对iterator进行操作,
不同的是,foreach是直接在每个partition中直接对iterator执行foreach操作,而传入的function只是在foreach内部使用,
而foreachPartition是在每个partition中把iterator给传入的function,让function自己对iterator进行处理(可以避免内存溢出).
---------------------------------
两个方法的差异就在于有没有 key这个单词,所以说:groupBy()方法是根据用户自定义的情况进行分组,而groupByKey()则是根据key值进行分组的,也就是说,进行groupByKey()方法的数据本身就是一种key-value类型的,并且数据的分组方式就是根据这个key值相同的进行分组的
------------------------------------
mapPartitions
def mapPartitions[U](f: Iterator[Int] => Iterator[U],preservesPartitioning: Boolean)(implicit evidence$6: scala.reflect.ClassTag[U]): org.apache.spark.rdd.RDD[U]
与map方法类似,map是对rdd中的每一个元素进行操作,而mapPartitions(foreachPartition)则是对rdd中的每个分区的迭代器进行操作。如果在map过程中需要频繁创建额外的对象(例如将rdd中的数据通过jdbc写入数据库,map需要为每个元素创建一个链接而mapPartition为每个partition创建一个链接),则mapPartitions效率比map高的多。
SparkSql或DataFrame默认会对程序进行mapPartition的优化。
scala> val rdd1=sc.makeRDD(1 to 10,3)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at makeRDD at <console>:24
scala> rdd1.collect
res2: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> def func2(iter:Iterator[Int]):Iterator[String]= {iter.toList.map(x=>" val:"+x).iterator}
func2: (iter: Iterator[Int])Iterator[String]
scala> rdd1.mapPartitions(func2).collect
res22: Array[String] = Array(" val:1", " val:2", " val:3", " val:4", " val:5", " val:6", " val:7", " val:8", " val:9", " val:10")
def mapPartitionsWithIndex[U](f: (Int, Iterator[Int]) => Iterator[U],preservesPartitioning: Boolean)(implicit evidence$9: scala.reflect.ClassTag[U]): org.apache.spark.rdd.RDD[U]
函数作用同mapPartitions,不过提供了两个参数,第一个参数为分区的索引。
scala> def func1(index:Int,iter:Iterator[Int]):Iterator[String]={iter.toList.map(x=>"partid:"+index+" val:"+x).iterator}
func1: (index: Int, iter: Iterator[Int])Iterator[String]
scala> rdd1.mapPartitionsWithIndex(func1).collect
res4: Array[String] = Array(partid:0 val:1, partid:0 val:2, partid:0 val:3, partid:1 val:4, partid:1 val:5, partid:1 val:6, partid:2 val:7, partid:2 val:8, partid:2 val:9, partid:2 val:10)
----------------------------------------------------------
和分区有关系
scala> val rdd1=sc.makeRDD(1 to 10,3)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at <console>:24
scala> val rdd1=sc.makeRDD(1 to 10,3)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at makeRDD at <console>:24
scala> rdd1.aggregate(0)(_+_,_+_)
res3: Int = 55
scala> rdd1.aggregate(5)(_+_,_+_)
res4: Int = 75
scala> val rdd1=sc.makeRDD(1 to 10,5)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at makeRDD at <console>:24
scala> rdd1.aggregate(5)(_+_,_+_)
res5: Int = 85
--------------------------------------------
scala> val rdd1=sc.makeRDD(1 to 10,5)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at makeRDD at <console>:24
scala> def func1(index:Int,iter:Iterator[Int]):Iterator[String]={iter.toList.map(x=>"[partid:"+index+" val:"+x+"]").iterator}
func1: (index: Int, iter: Iterator[Int])Iterator[String]
scala> rdd1.mapPartitionsWithIndex(func1).collect
res17: Array[String] = Array([partid:0 val:1], [partid:0 val:2], [partid:1 val:3], [partid:1 val:4], [partid:2 val:5], [partid:2 val:6], [partid:3 val:7], [partid:3 val:8], [partid:4 val:9], [partid:4 val:10])
scala> rdd1.aggregate(0)(math.max(_,_),_+_) //每个分区的最大值
res12: Int = 30
scala> rdd1.aggregate(5)(math.max(_,_),_+_)//每个分区以及5取最大值结果分别为(5,5,6,8,10),各个分区合并再5,5,6,8,10相加再+5=39
res13: Int = 39
---------------------
scala> val rdd2=sc.makeRDD(List("a","b","c","d","e","f"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[9] at makeRDD at <console>:24
scala> rdd2.aggregate("")(_+_,_+_)
res18: String = abcdef
scala> rdd2.aggregate("")(_+_,_+_)
res19: String = defabc //每个分区一个任务,先完成的任务先返回结果导致每次返回结果次序不一致
scala> rdd2.aggregate("|")(_+_,_+_)
res21: String = ||abc|def
scala> rdd2.aggregate("|")(_+_,_+_)
res22: String = ||def|abc
scala> rdd2.aggregate("|")(_+_,_+_)
res23: String = ||abc|def
scala> rdd2.aggregate("|")(_+_,_+_)
res24: String = ||abc|def
-----------------------------------------------------
RDD的5个特性
* Internally, each RDD is characterized by five main properties:
*
* - A list of partitions
* - A function for computing each split
* - A list of dependencies on other RDDs
* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
* an HDFS file)
大数据移动计算和移动数据
移动计算就是把计算任务下发到数据所在的节点进行处理。
移动数据就是将数据移动到计算任务的节点,这样将损耗大量网络开销,导致流量激增,处理效率慢。
-----------------------
RDD操作分为transfromation和action
transfromation
创建rdd的两种方式:从存储介质或者将driver端的一个集合通过并行化方式创建RDD;RDD->RDD
action
action执行完成后就没有RDD了,只有结果:
collect,saveastextfile
------------------------------------------分区一 空字符串长度是0,0转换为字符串长度为1,导致比较后,第一分区长度为1;第二分区空字符串长度是0,0转换为字符串长度为1,与空串长度相比,最小长度为0,最终第二分区长度为0,最后合并长度为10或者01
scala> val rdd3=sc.parallelize(List("12","23","345",""),2)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[15] at parallelize at <console>:24
scala> rdd3.aggregate("")((x,y)=>math.min(x.length,y.length).toString,_+_)
res63: String = 01
scala> rdd3.aggregate("")((x,y)=>math.min(x.length,y.length).toString,_+_)
res64: String = 01
scala> rdd3.aggregate("")((x,y)=>math.min(x.length,y.length).toString,_+_)
res65: String = 10
---------------------------------------------
scala> val rdd4=sc.makeRDD(List(("cat",5),("dog",5),("cat",10)),2)
rdd4: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[16] at makeRDD at <console>:24
scala> def func2(index:Int,iter:Iterator[(String,Int)]):Iterator[String]={iter.toList.map(x=>"[partid:"+index+" val:"+x+"]").iterator}
func2: (index: Int, iter: Iterator[(String, Int)])Iterator[String]
scala> rdd4.mapPartitionsWithIndex(func2).collect
res74: Array[String] = Array([partid:0 val:(cat,5)], [partid:1 val:(dog,5)], [partid:1 val:(cat,10)])
scala> rdd4.aggregateByKey(0)(_+_,_+_).collect
res76: Array[(String, Int)] = Array((dog,5), (cat,15))
------------------------------------
scala> val rdd4=sc.makeRDD(List(("cat",5),("dog",8),("cat",10),("cat",6),("dog",7)),2)
rdd4: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[73] at makeRDD at <console>:24
scala> rdd4.mapPartitionsWithIndex(func2).collect
res125: Array[String] = Array([partid:0 val:(cat,5)], [partid:0 val:(dog,8)], [partid:1 val:(cat,10)], [partid:1 val:(cat,6)], [partid:1 val:(dog,7)])
scala> rdd4.aggregateByKey(0)(math.max(_,_),_+_).collect
res126: Array[(String, Int)] = Array((dog,15), (cat,15)) //分区1按键取出最大值(cat,5),(dog,8),分区2按键取出最大值(cat,10),(dog,7),各个分区的结果再聚合
------------------------
scala> val rdd4=sc.makeRDD(List(("cat",5),("dog",8),("cat",10),("cat",6),("dog",7),("aa",3)),2)
rdd4: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[77] at makeRDD at <console>:24
scala> rdd4.mapPartitionsWithIndex(func2).collect
res128: Array[String] = Array([partid:0 val:(cat,5)], [partid:0 val:(dog,8)], [partid:0 val:(cat,10)], [partid:1 val:(cat,6)], [partid:1 val:(dog,7)], [partid:1 val:(aa,3)])
scala> rdd4.aggregateByKey(100)(math.max(_,_),_+_).collect// 两个分区,根据键值以及初始值100求最大值,分别得出(cat,100),(dog,100)以及(cat,100),(dog,100),(aa,100),然后再聚合
res129: Array[(String, Int)] = Array((aa,100), (dog,200), (cat,200))
--------------------------------------------------
def repartition(numPartitions: Int)(implicit ord: Ordering[String]): org.apache.spark.rdd.RDD[String]
repartition调用的是coalesce,shuffle为true
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
scala> val rdd3=sc.parallelize(List("12","23","345",""),2)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[106] at parallelize at <console>:24
scala> rdd3.partitions.size
res241: Int = 2
scala> rdd5.repartition(5).partitions.size
res242: Int = 5
scala> rdd5.repartition(3).partitions.size
res243: Int = 3
def coalesce(numPartitions: Int,shuffle: Boolean,partitionCoalescer: Option[org.apache.spark.rdd.PartitionCoalescer])(implicit ord: Ordering[String]): org.apache.spark.rdd.RDD[String]
coalesce shuffle默认为false
scala> rdd5.coalesce(4,false).partitions.size
res249: Int = 2
scala> rdd5.coalesce(4,true).partitions.size
res250: Int = 4
scala> rdd3.coalesce(8).partitions.size
res18: Int = 5
scala> rdd3.coalesce(8,true).partitions.size
res19: Int = 8
--------------------------------------------
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("b",3),("b",1)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[40] at makeRDD at <console>:24
scala> rdd00.countByValue()
res22: scala.collection.Map[(String, Int),Long] = Map((a,3) -> 1, (b,1) -> 2, (b,3) -> 1, (a,1) -> 1)
scala> rdd00.countByKey()
res23: scala.collection.Map[String,Long] = Map(a -> 2, b -> 3)
--------------------------------
def filterByRange(lower: String,upper: String): org.apache.spark.rdd.RDD[(String, Int)]
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("ba",3),("b",1),("g",10)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[48] at makeRDD at <console>:24
scala> rdd00.filterByRange("b","f").collect
res26: Array[(String, Int)] = Array((b,1), (ba,3), (b,1))、
-----------------------------
scala> val rdd00=sc.makeRDD(List(("a","20 50"),("b","10 20"),("a","3")))
rdd00: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[56] at makeRDD at <console>:24
scala> rdd00.flatMapValues(_.split(" ")).collect //对键值进行flatmap
res34: Array[(String, String)] = Array((a,20), (a,50), (b,10), (b,20), (a,3))
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("ba",3),("b",1),("g",10)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[61] at makeRDD at <console>:24
scala> rdd00.foldByKey(0)(_+_).collect
res37: Array[(String, Int)] = Array((a,4), (b,2), (ba,3), (g,10))
-------------------------------------
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("ba",3),("b",1),("g",10)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[69] at makeRDD at <console>:24
scala> val aa=rdd00.map(x=>(x._2.toString,x._1))
aa: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[70] at map at <console>:26
scala> aa.collect
res41: Array[(String, String)] = Array((1,a), (1,b), (3,a), (3,ba), (1,b), (10,g))
scala> aa.foldByKey("")(_+_).collect
res42: Array[(String, String)] = Array((1,abb), (3,aba), (10,g))
-------------------------
fold与reduce功能相同,只不过fold需要制定初始值
------------------------
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("ba",3),("b",1),("g",10)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[73] at makeRDD at <console>:24
scala> rdd00.collectAsMap //只有键值对类型的rdd才能使用collectAsMap
res45: scala.collection.Map[String,Int] = Map(b -> 1, g -> 10, a -> 3, ba -> 3)
-------------------------------
def keyBy[K](f: String => K): org.apache.spark.rdd.RDD[(K, String)]
scala> val hhh=sc.makeRDD(List("apple","egg","tomato","bird","elephant"))
hhh: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[77] at makeRDD at <console>:24
scala> val hhha=hhh.map(x=>(x,x.length))
hhha: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[78] at map at <console>:26
scala> hhha.collect
res48: Array[(String, Int)] = Array((apple,5), (egg,3), (tomato,6), (bird,4), (elephant,8))
scala> hhh.keyBy(_.length).collect //以长度为key
res49: Array[(Int, String)] = Array((5,apple), (3,egg), (6,tomato), (4,bird), (8,elephant))
mapValues(func)
对键值对每个value都应用一个函数,但是,key不会发生变化。
--------------------------------------------------------
scala> val rdd00=sc.makeRDD(List(("a",1),("b",1),("a",3),("ba",3),("b",1),("g",10)))
rdd00: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[15] at makeRDD at <console>:24
scala> rdd00.mapPartitions(it=>it.map(x=>(x._1,x._2*10))).collect
res18: Array[(String, Int)] = Array((a,10), (b,10), (a,30), (ba,30), (b,10), (g,100))
-----------------------------
map(function)
map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。
mapPartitions(function)
map()的输入函数是应用于RDD中每个元素,而mapPartitions()的输入函数是应用于每个分区
mapValues(function)
原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。
flatMap(function)
与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素
scala> rdd00.mapPartitions(it=>it.map(x=>(x._1,0 to x._2))).collect
res20: Array[(String, scala.collection.immutable.Range.Inclusive)] = Array((a,Range(0, 1)), (b,Range(0, 1)), (a,Range(0, 1, 2, 3)), (ba,Range(0, 1, 2, 3)), (b,Range(0, 1)), (g,Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)))
-----------------------------------------
def foreachPartition(f: Iterator[(String, Int)] => Unit): Unit
scala> rdd00.foreachPartition(it=>it.foreach(x=>println(x)))
(ba,3)
(b,1)
(g,10)
(a,1)
(b,1)
(a,3)
def foreach(f: ((String, Int)) => Unit): Unit
scala> rdd00.foreach(x=>println(x))
(ba,3)
(b,1)
(g,10)
(a,1)
(b,1)
(a,3)
---------------------------------
scala> rdd00.reduceByKey(_+_).collect
res28: Array[(String, Int)] = Array((b,2), (a,4), (ba,3), (g,10))
scala> rdd00.aggregateByKey(0)(_+_,_+_).collect
res29: Array[(String, Int)] = Array((b,2), (a,4), (ba,3), (g,10))
scala> rdd00.foldByKey(0)(_+_).collect
res31: Array[(String, Int)] = Array((b,2), (a,4), (ba,3), (g,10))