• poj--2553--The Bottom of a Graph (scc+缩点)


    The Bottom of a Graph

    Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
    Total Submission(s) : 1   Accepted Submission(s) : 1
    Problem Description
    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
     

    Input
    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
     

    Output
    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
     

    Sample Input
    3 3 1 3 2 3 3 1 2 1 1 2 0
     

    Sample Output
    1 3 2
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #include<stack>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define MAX 50010
    struct node
    {
    	int u,v;
    	int next;
    }edge[MAX];
    int low[MAX],dfn[MAX];
    int sccno[MAX],head[MAX];
    int scc_cnt,dfs_clock,cnt;
    bool Instack[MAX];
    int m,n;
    stack<int>s;
    vector<int>G[MAX];
    vector<int>scc[MAX];
    int in[MAX],out[MAX];
    int num[MAX];
    void init()
    {
    	memset(head,-1,sizeof(head));
    	cnt=0;
    }
    void add(int u,int v)
    {
    	edge[cnt].u=u;
    	edge[cnt].v=v;
    	edge[cnt].next=head[u];
    	head[u]=cnt++;
    }
    void getmap()
    {
    	int a,b;
    	while(m--)
    	{
    		scanf("%d%d",&a,&b);
    		add(a,b);
    	}
    }
    void tarjan(int u,int fa)
    {
    	int v;
    	low[u]=dfn[u]=++dfs_clock;
    	s.push(u);
    	Instack[u]=true;
    	for(int i=head[u];i!=-1;i=edge[i].next)
    	{
    		v=edge[i].v;
    		if(!dfn[v])
    		{
    			tarjan(v,u);
    			low[u]=min(low[u],low[v]);
    		}
    		else if(Instack[v])
    		low[u]=min(low[u],dfn[v]);
    	}
    	if(low[u]==dfn[u])
    	{
    		scc_cnt++;
    		scc[scc_cnt].clear();
    		for(;;)
    		{
    			v=s.top();
    			s.pop();
    			Instack[v]=false;
    			scc[scc_cnt].push_back(v);
    			sccno[v]=scc_cnt;
    			if(v==u) break;
    		}
    	}
    }
    void find(int l,int r)
    {
    	memset(sccno,0,sizeof(sccno));
    	memset(low,0,sizeof(low));
    	memset(dfn,0,sizeof(dfn));
    	memset(Instack,false,sizeof(Instack));
    	dfs_clock=scc_cnt=0;
    	for(int i=l;i<=r;i++)
    	if(!dfn[i])
    	tarjan(i,-1);
    }
    void suodian()
    {
    	for(int i=1;i<=scc_cnt;i++)
    	G[i].clear(),in[i]=out[i]=0;
    	for(int i=0;i<cnt;i++)
    	{
    		int u=sccno[edge[i].u];
    		int v=sccno[edge[i].v];
    		if(u!=v)
    		G[u].push_back(v),out[u]++,in[v]++;
    	}
    }
    void solve()
    {
    	int ans=0;
    	int k=0;
    	for(int i=1;i<=scc_cnt;i++)
    	{
    		if(out[i]==0)
    		{
    			for(int j=0;j<scc[i].size();j++)
    			num[k++]=scc[i][j]; 
    		}
    	}
    	sort(num,num+k);
    	for(int i=0;i<k-1;i++)
    	printf("%d ",num[i]);
    	printf("%d
    ",num[k-1]);
    }
    int main()
    {
    	while(scanf("%d%d",&n,&m),n)
    	{
    		init();
    		getmap();
    		find(1,n);
    		suodian();
    		solve();
    	}
    	return 0;
    }

     
  • 相关阅读:
    webpack 关于跨域的配置
    如何使用css变量
    样式重置
    vue+element_ui上传文件,并传递额外参数(自动上传)
    LeetCode-46-全排列
    LeetCode-39-组合总数
    LeetCode-33-搜索旋转排序数组
    LeetCode-207-课程表
    LeetCode-15-三数之和
    LeetCode-盛最多水的容器
  • 原文地址:https://www.cnblogs.com/playboy307/p/5273780.html
Copyright © 2020-2023  润新知