The Bottom of a Graph
Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
Problem Description
We will use the following (standard) definitions from graph theory. Let
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph
G. Each test case starts with an integer number v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer
e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty
line.
Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
Sample Output
1 3 2#include<stdio.h> #include<string.h> #include<queue> #include<stack> #include<algorithm> #include<vector> using namespace std; #define MAX 50010 struct node { int u,v; int next; }edge[MAX]; int low[MAX],dfn[MAX]; int sccno[MAX],head[MAX]; int scc_cnt,dfs_clock,cnt; bool Instack[MAX]; int m,n; stack<int>s; vector<int>G[MAX]; vector<int>scc[MAX]; int in[MAX],out[MAX]; int num[MAX]; void init() { memset(head,-1,sizeof(head)); cnt=0; } void add(int u,int v) { edge[cnt].u=u; edge[cnt].v=v; edge[cnt].next=head[u]; head[u]=cnt++; } void getmap() { int a,b; while(m--) { scanf("%d%d",&a,&b); add(a,b); } } void tarjan(int u,int fa) { int v; low[u]=dfn[u]=++dfs_clock; s.push(u); Instack[u]=true; for(int i=head[u];i!=-1;i=edge[i].next) { v=edge[i].v; if(!dfn[v]) { tarjan(v,u); low[u]=min(low[u],low[v]); } else if(Instack[v]) low[u]=min(low[u],dfn[v]); } if(low[u]==dfn[u]) { scc_cnt++; scc[scc_cnt].clear(); for(;;) { v=s.top(); s.pop(); Instack[v]=false; scc[scc_cnt].push_back(v); sccno[v]=scc_cnt; if(v==u) break; } } } void find(int l,int r) { memset(sccno,0,sizeof(sccno)); memset(low,0,sizeof(low)); memset(dfn,0,sizeof(dfn)); memset(Instack,false,sizeof(Instack)); dfs_clock=scc_cnt=0; for(int i=l;i<=r;i++) if(!dfn[i]) tarjan(i,-1); } void suodian() { for(int i=1;i<=scc_cnt;i++) G[i].clear(),in[i]=out[i]=0; for(int i=0;i<cnt;i++) { int u=sccno[edge[i].u]; int v=sccno[edge[i].v]; if(u!=v) G[u].push_back(v),out[u]++,in[v]++; } } void solve() { int ans=0; int k=0; for(int i=1;i<=scc_cnt;i++) { if(out[i]==0) { for(int j=0;j<scc[i].size();j++) num[k++]=scc[i][j]; } } sort(num,num+k); for(int i=0;i<k-1;i++) printf("%d ",num[i]); printf("%d ",num[k-1]); } int main() { while(scanf("%d%d",&n,&m),n) { init(); getmap(); find(1,n); suodian(); solve(); } return 0; }