• Pandas练习1


    来自 https://github.com/guipsamora/pandas_exercises

    Ex2 - Getting and Knowing your Data

    This time we are going to pull data directly from the internet.
    Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.

    Step 1. Import the necessary libraries

    import pandas as pd
    import numpy as np
    

    Step 2. Import the dataset from this address.

    Step 3. Assign it to a variable called chipo.

    url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv'
    chipo = pd.read_csv(url,sep='	')
    

    Step 4. See the first 10 entries

    # Solution 1
    
    chipo[:10]
    
    order_id quantity item_name choice_description item_price
    0 1 1 Chips and Fresh Tomato Salsa NaN $2.39
    1 1 1 Izze [Clementine] $3.39
    2 1 1 Nantucket Nectar [Apple] $3.39
    3 1 1 Chips and Tomatillo-Green Chili Salsa NaN $2.39
    4 2 2 Chicken Bowl [Tomatillo-Red Chili Salsa (Hot), [Black Beans... $16.98
    5 3 1 Chicken Bowl [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... $10.98
    6 3 1 Side of Chips NaN $1.69
    7 4 1 Steak Burrito [Tomatillo Red Chili Salsa, [Fajita Vegetables... $11.75
    8 4 1 Steak Soft Tacos [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... $9.25
    9 5 1 Steak Burrito [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25
    # Solution 2
    
    chipo.head(10)
    
    order_id quantity item_name choice_description item_price
    0 1 1 Chips and Fresh Tomato Salsa NaN $2.39
    1 1 1 Izze [Clementine] $3.39
    2 1 1 Nantucket Nectar [Apple] $3.39
    3 1 1 Chips and Tomatillo-Green Chili Salsa NaN $2.39
    4 2 2 Chicken Bowl [Tomatillo-Red Chili Salsa (Hot), [Black Beans... $16.98
    5 3 1 Chicken Bowl [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... $10.98
    6 3 1 Side of Chips NaN $1.69
    7 4 1 Steak Burrito [Tomatillo Red Chili Salsa, [Fajita Vegetables... $11.75
    8 4 1 Steak Soft Tacos [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... $9.25
    9 5 1 Steak Burrito [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25

    Step 5. What is the number of observations in the dataset?

    type(chipo)
    
    pandas.core.frame.DataFrame
    
    # Solution 1
    
    len(chipo.index)
    
    4622
    
    # Solution 2
    
    chipo.shape[0]
    
    4622
    
    # Solution 3
    
    chipo.info()
    
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4622 entries, 0 to 4621
    Data columns (total 5 columns):
    order_id              4622 non-null int64
    quantity              4622 non-null int64
    item_name             4622 non-null object
    choice_description    3376 non-null object
    item_price            4622 non-null object
    dtypes: int64(2), object(3)
    memory usage: 180.7+ KB
    

    Step 6. What is the number of columns in the dataset?

    # Solution 1
    
    len(chipo.columns)
    
    5
    
    # Solution 2
    
    chipo.shape[1]
    
    5
    

    Step 7. Print the name of all the columns.

    list(chipo.columns)
    
    ['order_id', 'quantity', 'item_name', 'choice_description', 'item_price']
    

    Step 8. How is the dataset indexed?

    chipo.index
    
    RangeIndex(start=0, stop=4622, step=1)
    

    Step 9. Which was the most-ordered item?

    c = chipo.groupby('item_name')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c['quantity'].head(1)
    
    item_name
    Chicken Bowl    761
    Name: quantity, dtype: int64
    

    Step 10. For the most-ordered item, how many items were ordered?

    c = chipo.groupby('item_name')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c['quantity'].head(1)
    
    item_name
    Chicken Bowl    761
    Name: quantity, dtype: int64
    

    Step 11. What was the most ordered item in the choice_description column?

    c = chipo.groupby('choice_description')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c.head(1)
    
    order_id quantity
    choice_description
    [Diet Coke] 123455 159

    Step 12. How many items were orderd in total?

    chipo['quantity'].sum()
    
    4972
    

    Step 13. Turn the item price into a float

    Step 13.a. Check the item price type

    chipo['item_price'].dtypes
    
    dtype('O')
    

    Step 13.b. Create a lambda function and change the type of item price

    chipo['item_price'] = chipo['item_price'].apply(lambda x:x.replace('$','')).astype(np.float64);
    # dollarizer = lambda x:float(x[1:-1])
    # chipo.item_price = chipo.item_price.apply(dollarizer)
    

    Step 13.c. Check the item price type

    chipo['item_price'].dtypes
    
    dtype('float64')
    

    Step 14. How much was the revenue for the period in the dataset?

    (chipo['quantity']*chipo['item_price']).sum()
    
    39237.02
    

    Step 15. How many orders were made in the period?

    # Solution 1
    
    g = chipo.groupby(['order_id'])
    g.ngroups
    
    1834
    
    # Solution 2
    
    orders = chipo.order_id.value_counts().count()
    orders
    
    1834
    

    Step 16. What is the average revenue amount per order?

    # Solution 1
    
    chipo['revenue'] = chipo['quantity']*chipo['item_price']
    order_grouped = chipo.groupby(by=['order_id']).sum()
    order_grouped.mean()['revenue']
    
    21.394231188658654
    
    # Solution 2
    
    chipo.groupby(by=['order_id']).sum().mean()['revenue']
    
    21.394231188658654
    

    Step 17. How many different items are sold?

    chipo.item_name.value_counts().count()
    
    50
  • 相关阅读:
    mysql索引
    mysql事务
    MySQL注入问题
    【CUDA并行编程之四】矩阵相乘
    【CUDA并行编程之三】Cuda矢量求和运算
    【Cuda并行编程之二】Cuda Memory Hierarchy_Cuda内存层次结构
    【Cuda并行编程之一】二分查找的探究以及Cuda的简单实现&&相关面试题介绍
    CUDA编程接口:共享存储器实现矩阵相乘
    CUDA学习
    CUDA从入门到精通
  • 原文地址:https://www.cnblogs.com/pkuimyy/p/11505970.html
Copyright © 2020-2023  润新知