• 吴恩达《深度学习》第一课第三周编程作业(带一个隐藏层的分类问题)


    参考链接:https://blog.csdn.net/u013733326/article/details/79702148

    # coding=utf-8
    # This is a sample Python script.
    
    # Press ⌃R to execute it or replace it with your code.
    # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
    
    import numpy as np
    import matplotlib.pyplot as plt
    from testCases import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    
    np.random.seed(1)
    
    
    def sigmoid(z):
        return 1 / (1 + np.exp(-z))
    
    
    def layer_sizes(X, Y):
        n_x = X.shape[0]
        n_y = Y.shape[0]
        n_h = 4
        return n_x, n_h, n_y
    
    
    def init(nx, nh, ny):
        np.random.seed(2)
        w1 = np.random.randn(nh, nx) * 0.01
        b1 = np.zeros(shape=(nh, 1))
        w2 = np.random.randn(ny, nh) * 0.01
        b2 = np.zeros(shape=(ny, 1))
        assert w1.shape == (nh, nx)
        assert b1.shape == (nh, 1)
        assert w2.shape == (ny, nh)
        assert b2.shape == (ny, 1)
    
        paramters = {
            "w1": w1,
            "b1": b1,
            "w2": w2,
            "b2": b2
        }
    
        return paramters
    
    
    # Press the green button in the gutter to run the script.
    
    def forward(X, paramters):
        w1 = paramters["w1"]
        b1 = paramters["b1"]
        w2 = paramters["w2"]
        b2 = paramters["b2"]
        # 前向传播
        z1 = np.dot(w1, X) + b1
        a1 = np.tanh(z1)
        z2 = np.dot(w2, a1) + b2
        a2 = sigmoid(z2)
    
        assert a2.shape == (1, X.shape[1])
        cache = {
            "z1": z1,
            "a1": a1,
            "z2": z2,
            "a2": a2
        }
    
        return cache
    
    
    def cal_cost(Y, parameters, a2):
        m = Y.shape[1]
        w1 = parameters["w1"]
        w2 = parameters["w2"]
    
        logprobs = np.multiply(np.log(a2), Y) + np.multiply((1 - Y), np.log(1 - a2))
        cost = -np.sum(logprobs) / m
        cost = float(np.squeeze(cost))
    
        assert isinstance(cost, float)
    
        return cost
    
    
    def backward_propagation(paramters, cache, X, Y):
        m = Y.shape[1]
        w1 = paramters["w1"]
        w2 = paramters["w2"]
    
        a1 = cache["a1"]
        a2 = cache["a2"]
    
        dz2 = a2 - Y
        dw2 = 1 / m * np.dot(dz2, a1.T)
        db2 = 1 / m * np.sum(dz2, axis=1, keepdims=True)
        dz1 = np.multiply(np.dot(w2.T, dz2), 1 - np.power(a1, 2))
        dw1 = 1 / m * np.dot(dz1, X.T)
        db1 = 1 / m * np.sum(dz1, axis=1, keepdims=True)
        grads = {
            "dw1":  dw1,
            "db1":  db1,
            "dw2":  dw2,
            "db2":  db2
        }
        return grads
    
    
    def update(paramters, grads, learning_rate):
        w1, w2 = paramters["w1"], paramters["w2"]
        b1, b2 = paramters["b1"], paramters["b2"]
    
        dw1, dw2 = grads["dw1"], grads["dw2"]
        db1, db2 = grads["db1"], grads["db2"]
    
        w1 = w1 - learning_rate * dw1
        b1 = b1 - learning_rate * db1
        w2 = w2 - learning_rate * dw2
        b2 = b2 - learning_rate * db2
    
        paramters = {
            "w1":   w1,
            "b1":   b1,
            "w2":   w2,
            "b2":   b2
        }
    
        return paramters
    
    
    def predict(parameters, X):
        cache = forward(X, parameters)
        a2 = cache["a2"]
        predictions = np.round(a2)
        return predictions
    
    def solve(X, Y, nh, num_iterations, learning_rate):
        parameters = init(X.shape[0], nh, Y.shape[0])
    
        for i in range(num_iterations):
            cache = forward(X, parameters)
            cost = cal_cost(Y, parameters, cache["a2"])
            grads = backward_propagation(parameters, cache, X, Y)
            parameters = update(parameters, grads, learning_rate)
        return parameters
    
    
    if __name__ == '__main__':
        # print_hi('PyCharm')
        X, Y = load_planar_dataset()
        hiden = [1, 2, 3, 4, 5, 10, 20, 30, 40, 50]
        for i, n_h in enumerate(hiden):
            print("nh = :", n_h)
            parameters = solve(X, Y, i,  num_iterations=5000, learning_rate=0.5)
    
            plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    
            plt.title("Decision Boundary for hidden layer size " + str(4))
    
            predictions = predict(parameters, X)
            print('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
            plt.show()
        # X_assess = predict_test_case()
        # predictions = predict(parameters, X)
        # print(str(np.mean(predictions)))
        # plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral)
        # plt.show()
        #
        # print(X.shape)
        # shape_X = X.shape
        # shape_Y = Y.shape
        # m = Y.shape[1]
        # print("X的纬度为:" + str(shape_X))
        # print("X的纬度为:" + str(shape_Y))
        # print("数据集里面的数据有:" + str(m) + "个")
        # clf = sklearn.linear_model.LogisticRegressionCV()
        # clf.fit(X.T, Y.T.ravel())
        # clf.fit(X.T, Y.T)
        # clf = sklearn.linear_model.LogisticRegressionCV()
        # clf.fit(X.T, Y.T)
        # plot_decision_boundary(lambda x: clf.predict(x), X, Y)
        # plt.title("Logistic Regression")
        # LR_predictions = clf.predict(X.T)
        # plt.show()
        # print("逻辑回归的准确性:%d"
        #       % float((np.dot(Y, LR_predictions) + np.dot(1 - Y, 1 - LR_predictions)) /
        #       float(Y.size) * 100)
        #       + "%" + "(正确标记数据点所占的百分比)")
    
    # See PyCharm help at https://www.jetbrains.com/help/pycharm/
    

      

  • 相关阅读:
    (转)如何最佳地使用memcached?
    win7 安装 memcached
    (转)怎么把主机的文件复制到虚拟机上
    memcache和redis本质区别在哪里?
    关于memcached
    (转)memcached注意事项
    (转)Memcached深度分析
    《项目架构那点儿事》——快速构建Junit用例
    《项目架构那点儿事》——工具类,你喜欢你就拿去
    《项目架构那点儿事》——Hibernate泛型Dao,让持久层简洁起来
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/14292809.html
Copyright © 2020-2023  润新知