题意:有一个n * 2的网格图,有3种操作:给两个相邻的点加上一条边,断开相邻的两个点连着的边,询问两个点的连通性。
思路:直接看博客就行了,https://blog.csdn.net/roll_keyboard/article/details/81185535,在纸上画一画来确定4个顶点之间的更新关系。有一个需要注意的细节是有可能通过绕远路的方式可以到达,所以需要考虑前面和后面的部分对询问区间的影响。
代码:
#include <bits/stdc++.h> #define ls (o << 1) #define rs (o << 1 | 1) using namespace std; const int maxn = 100010; struct node { bool l, r, u, d, x1, x2, U, D; }; node tr[maxn * 4]; node init() { node ans; ans.l = ans.r = ans.D = ans.U = ans.x1 = ans.x2 = 0; ans.u = ans.d = 1; return ans; } node merge(node a1, node a2) { node ans; ans.l = (a1.l | (a1.u & a1.U & a2.l & a1.D & a1.d)); ans.r = (a2.r | (a2.u & a1.U & a1.r & a1.D & a1.d)); ans.u = ((a1.u & a1.U & a2.u) | (a1.x1 & a1.D & a2.x2)); ans.d = ((a1.d & a1.D & a2.d) | (a1.x2 & a1.U & a2.x1)); ans.x1 = ((a1.u & a1.U & a2.x1) | (a1.x1 & a1.D & a2.d)); ans.x2 = ((a1.x2 & a1.U & a2.u) | (a1.d & a1.D & a2.x2)); ans.U = a2.U; ans.D = a2.D; return ans; } void build(int o, int l, int r) { if(l == r) { tr[o] = init(); return; } int mid = (l + r) >> 1; build(ls, l, mid); build(rs, mid + 1, r); tr[o] = merge(tr[ls], tr[rs]); } void update(int o, int l, int r, int p, int type) { if(l == r) { if(type >> 2) { tr[o].l = tr[o].r = tr[o].x1 = tr[o].x2 = (type & 1); return; } else if (type >> 1) { tr[o].U = (type & 1); } else { tr[o].D = (type & 1); } return; } int mid = (l + r) >> 1; if(p <= mid) update(ls, l, mid, p, type); else update(rs, mid + 1, r, p, type); tr[o] = merge(tr[ls], tr[rs]); } node query(int o, int l, int r, int ql, int qr) { if(l >= ql && r <= qr) { return tr[o]; } int mid = (l + r) >> 1; node ans = init(); ans.U = ans.D = 1; if(ql <= mid) ans = merge(ans, query(ls, l, mid, ql, qr)); if(qr > mid) ans = merge(ans, query(rs, mid + 1, r, ql, qr)); return ans; } void out(bool flag) { if(flag) printf("Y "); else printf("N "); } char s[10]; int main() { int n; scanf("%d", &n); int x1, y1, x2, y2; build(1, 1, n); while(1) { scanf("%s", s + 1); if(s[1] == 'E') break; scanf("%d%d%d%d", &x1, &y1, &x2, &y2); if(y1 > y2) { swap(x1, x2); swap(y1, y2); } if(s[1] == 'A') { node ans1, ans2, ans3; if(y1 > 1) ans1 = query(1, 1, n, 1, y1 - 1); ans2 = query(1, 1, n, y1, y2); if(y2 < n) ans3 = query(1, 1, n, y2 + 1, n); if(y1 > 1 && (ans1.r && ans1.U && ans1.D)) { ans2.l |= 1; ans2.x1 |= (ans2.l & ans2.d); ans2.x2 |= (ans2.l & ans2.u); ans2.d |= (ans2.x1 & ans2.l); ans2.u |= (ans2.l & ans2.x2); } if(y2 < n && (ans2.U && ans3.l && ans2.D)) { ans2.r |= 1; ans2.x1 |= (ans2.u & ans2.r); ans2.x2 |= (ans2.d & ans2.r); ans2.d |= (ans2.x2 & ans2.r); ans2.u |= (ans2.x1 & ans2.r); } if(x1 == 1 && x2 == 1) { out(ans2.u); } else if(x1 == 1 && x2 == 2) { out(ans2.x1); } else if(x1 == 2 && x2 == 1) { out(ans2.x2); } else { out(ans2.d); } } else { int type = 0; if(y1 == y2) { type |= (1 << 2); if(s[1] == 'O') type |= 1; } else { if(x1 == 1) type |= (1 << 1); if(s[1] == 'O') type |= 1; } update(1, 1, n, y1, type); } } }