• HDU 6162 树链剖分


    题意:给你一颗树,每个节点有有一个权值,每次询问从x到y的最短路上权值在c到d之间的所有的点的权值和是多少。

    思路:肯定要用树剖,因为询问c到d之间这种操作树上倍增很难做,但是用其它数据结构可以比较好的查询。我们可以用线段树来进行这种操作。每次询问一个区间时,如果当前区间被查询区间完全覆盖,并且区间里的最大指小于等于d,最小值大于等于c,才返回,否则继续查询。这种做法其实可以被卡掉,比如很长的路径上点权都是1, 2, 1, 2这种,而询问的c和d都是1,这样线段树上的询问会被卡成O(n)的。我感觉比较可行的做法是离散化之后用主席树,这样可以保证O(logn),但是既然没卡这个,就懒得写这种做法了。

    线段树做法:

    #include <bits/stdc++.h>
    #define LL long long
    #define ls(x) (x << 1)
    #define rs(x) ((x << 1) | 1)
    using namespace std;
    const int maxn = 100010;
    int head[maxn], Next[maxn * 2], ver[maxn * 2];
    int son[maxn], d[maxn], f[maxn], top[maxn], sz[maxn], dfn[maxn];
    int n, m, tot, cnt;
    int a[maxn], b[maxn];
    void add(int x, int y) {
    	ver[++tot] = y;
    	Next[tot] = head[x];
    	head[x] = tot;
    }
    struct SegmentTree {
    	int mx, mi;
    	LL sum;
    };
    SegmentTree tr[maxn * 4];
    void pushup(int o) {
    	tr[o].sum = tr[ls(o)].sum + tr[rs(o)].sum;
    	tr[o].mi = min(tr[ls(o)].mi, tr[rs(o)].mi);
    	tr[o].mx = max(tr[ls(o)].mx, tr[rs(o)].mx);
    }
    void build(int o, int l, int r) {
    	if(l == r) {
    		tr[o].mx = tr[o].mi = tr[o].sum = a[l];
    		return;
    	}
    	int mid = (l + r) >> 1;
    	build(ls(o), l, mid);
    	build(rs(o), mid + 1, r);
    	pushup(o);
    }
    bool match(int o, int l, int r) {
    	return tr[o].mi >= l && tr[o].mx <= r;
    }
    LL query(int o, int l, int r, int ql, int qr, int lb, int rb) {
    	if(l >= ql && r <= qr && match(o, lb, rb)) {
    		return tr[o].sum;
    	}
    	int mid = (l + r) >> 1;
    	LL ans = 0;
    	if(ql <= mid && !(tr[ls(o)].mx < lb || tr[ls(o)].mi > rb)) ans += query(ls(o), l, mid, ql, qr, lb, rb);
    	if(qr > mid && !(tr[rs(o)].mx < lb || tr[rs(o)].mi > rb)) ans += query(rs(o), mid + 1, r, ql, qr, lb, rb);
    	return ans;
    }
    void dfs1(int x, int fa) {
    	sz[x] = 1;
    	f[x] = fa;
    	d[x] = d[fa] + 1;
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if(y == fa) continue;
    		dfs1(y, x);
    		sz[x] += sz[y];
    		if(!son[x] || sz[y] > sz[son[x]])
    			son[x] = y;
    	}
    }
    void dfs2(int x, int fa, int t) {
    	top[x] = t;
    	dfn[x] = ++cnt;
    	a[dfn[x]] = b[x];
    	if(son[x]) dfs2(son[x], x, t);
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if(y == fa || y == son[x]) continue;
    			dfs2(y, x, y);
    	}
    }
    LL solve(int l, int r, int x, int y) {
    	LL ans = 0;
    	while(top[l] != top[r]) {
    		if(d[top[l]] > d[top[r]]) {
    			ans += query(1, 1, n, dfn[top[l]], dfn[l], x, y);
    			l = f[top[l]]; 
    		} else {
    			ans += query(1, 1, n, dfn[top[r]], dfn[r], x, y);
    			r = f[top[r]];
    		}
    	}
    	if(d[l] < d[r]) ans += query(1, 1, n, dfn[l], dfn[r], x, y);
    	else ans += query(1, 1, n, dfn[r], dfn[l], x, y);
    	return ans;
    }
    int main() {
    	int x, y, l, r;
    	while(~scanf("%d%d", &n, &m)) {
    		memset(head, 0, sizeof(head));
    		memset(son, 0, sizeof(son));
    		memset(f, 0, sizeof(f));
    		memset(sz, 0, sizeof(sz));
    		memset(top, 0, sizeof(top));
    		memset(d, 0, sizeof(d));
    		tot = 0;
    		cnt = 0;
    		for (int i = 1; i <= n; i++)
    			scanf("%d", &b[i]);
    		for (int i = 1; i <= n - 1; i++) {
    			scanf("%d%d", &x, &y);
    			add(x, y);
    			add(y, x);
    		}
    		dfs1(1, 0);
    		dfs2(1, 0, 1);
    		build(1, 1, n);
    		while(m--) {
    			scanf("%d%d%d%d", &l, &r, &x, &y);
    			cout << solve(l, r, x, y);
    			if(m == 0) cout << endl;
    			else cout << " ";
    		}
    	}
    }
    

      

  • 相关阅读:
    【自动化测试不求人】selenium三种等待时间
    Linux中vim的简单配置
    linux中解压缩并安装.tar.gz后缀的文件
    Linux命令全称
    Linux中的find(-atime、-ctime、-mtime)指令分析
    (转)docker安装Mysql8.0并挂载外部配置和数据
    自动化测试常见Python算法题&答案
    2019年的面试经验总结-软件测试
    Python基础语法
    抓包工具Charles的使用说明
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/10651445.html
Copyright © 2020-2023  润新知