Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
好题目,想法有了,就是实现的时候出现了偏差,导致很长时间没有ac,后来还是看的别人的代码
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int n = nums.size(); if (n == 0) return 0; int l = 0, r = 0; int sum = 0; int Min = n + 1; while (l < n && r < n) { while (sum < s && r < n) sum += nums[r++]; while (sum >= s && l < n) { Min = min(Min, r - l); sum -= nums[l++]; } } if (Min == n + 1) return 0; return Min; } };