转自:新浪@WalkAnt
第六部分 存储与EEPROM管理
详细参考:http://dev.ardupilot.com/wiki/learning-ardupilot-storage-and-eeprom-management/
用户参数、航点、集结点、地图数据以及其他有用的信息需要存储。ArduPilot提供4个基本存储接口:
1、AP_HAL::Storage对象:hal.storage;
2、StorageManager库,是hal.storage更高级别的封装;
3、DataFlash用于日志存储;
4、Posix IO函数,是传统文件系统读写函数。
其他用于永久存储信息的函数库,都是基于以上4种实现。例如:AP_Param library(用于处理用户可配置参数)是建立在StorageManager库之上的,而StorageManager库则是基于AP_HAL::Storage之上。AP_Terrain library(用于处理地形数据)则是建立在Posix IO functions之上,用于操作地形数据库。
1、AP_HAL::Storage library
AP_HAL::Storage对象适用于所有ArduPilot硬件平台。最小支持4096字节空间的存储,一些类似PX4v1的板子有8K EEPROM,Pixhawk有16K FRAM。所有这些都封装在AP_HAL::Storage API中。
hal.storage API,非常简单,仅3个函数:
1、init(),初始化存储系统;
2、read_block(),读块数据;
3、write_block(),写块数据。
之所以这么简单,是因为APM团队鼓励开发者使用StorageManager API,而不是hal.storage。只有在代码移植或调试时,使用hal.storage会比较方便(原文:You should only be delving into hal.storage when doing bringup of a new board, or when debugging.)。
存储空间的大小,在AP_HAL/AP_HAL_Boards.h文件中的HAL_STORAGE_SIZE宏中定义,如下:
#define CONFIG_HAL_BOARD_SUBTYPE HAL_BOARD_SUBTYPE_PX4_V2
#define HAL_STORAGE_SIZE 16384 // 存储空间 16KB
#endif
也就是说,我们不支持动态存储空间的定义。如果希望使用动态存储空间,可以使用Posix IO。
2、StorageManager library
在将ArduPilot代码移植到一个新的硬件板上时,hal.storage API非常简单,但是在操作存储区时就不那么好使了。我们会采用StorageManager。StorageManager library提供对存储区域“伪连续块”(一般用作不同的功能和目的)的访问。正因此我们将存储区域分配了不同的功能:
1、参数区;
2、飞行区域限制点数据区;
3、航点数据区;
4、集结点数据区。
参见: libraries/StorageManager/StorageManager.cpp,我们可以看到存储区域的划分:
const StorageManager::StorageArea StorageManager::layout_copter[STORAGE_NUM_AREAS] PROGMEM = {
// ------------------------ 0-4096 分配给了 AVR版本的 APM
{ StorageParam, 0, 1536}, // 0x600 param bytes
{ StorageMission, 1536, 2422},
{ StorageRally, 3958, 90}, // 6 rally points
{ StorageFence, 4048, 48}, // 6 fence points
#if STORAGE_NUM_AREAS >= 8
// ------------------------ 4096-8192 分配给了PX4版本
{ StorageParam, 4096, 1280},
{ StorageRally, 5376, 300},
{ StorageFence, 5676, 256},
{ StorageMission, 5932, 2132}, // leave 128 byte gap for
// expansion and PX4 sentinal
#endif
#if STORAGE_NUM_AREAS >= 12 // Pixhawk
// ------------------------ 8192-16384 分配给了 Pixhawk版本
{ StorageParam, 8192, 1280}, // 类型 偏移量 长度
{ StorageRally, 9472, 300},
{ StorageFence, 9772, 256},
{ StorageMission, 10028, 6228}, // leave 128 byte gap for expansion
#endif
};
对于上面的存储分布,我们可以观察到AVR版本用到存储地址是0-4095,而PX4用到地址是4096-8191,Pixhawk用到的地址是8192-16383。这样的结构,是为了更好的与之前的版本兼容。这样一来,用户在更新最新的固件时,所有之前配置的参数将不会改变,将继续起作用。
StorageManager API也提供对类似整型数的读写访问,AP_Mission中就会利用这个API来存储和恢复航点数据。
相关例程(libraries/StorageManager/examples/StorageTest.pde)对StoageManager layer和AP_HAL::Storage object进行了测试。它对随机的偏移量、随机的长度进行了随机的IO操作。这也就意味可能会出现跨边界访问。这个例程非常有用,它用于对StorageManager API进行严苛测试,同样对于移植ArduPilot到新硬件平台也是极为有用的,因为它对EEPROM的访问函数进行了很严格的测试。
注意StorageTest是一个毁坏性的测试,它将会删除你之前存储的参数和航点。一定要记得测试之前,备份你的配置。
存储对象的声明,一般如下:
StorageAccess AP_Param::_storage(StorageManager::StorageParam);
又或者
StorageAccess AP_Rally::_storage(StorageManager::StorageRally);
StorageAccess AP_Mission::_storage(StorageManager::StorageMission);
StorageAccess AP_Limit_Geofence::_storage(StorageManager::StorageFence);
3、DataFlash library
另一类存储,就是飞行日志存储,这个基于DataFlash library。这个库的名字看上去有些怪怪的,实际上这个库最开始是为APM1的DataFlash芯片设计的,它原本是一个硬件驱动库,后来慢慢演变为一个通用日志系统,这个可以在代码中找到蛛丝马迹(这些都是以前的痕迹,不是最好的代码实现方式)。
现在DataFlash API主要用于实现日志存储。它允许你自定义日志消息的数据结构。例如GPS消息,用于记录GPS传感器的日志数据。它能够非常有效存储这些数据,它同时也对其他库提供相应的APIs,用来进行日志回传、下载。
LOG数据结构是自定义的,其结构可以查看日志文件的FMT消息。FMT消息地应以的其他数据的存储格式。
相关例程 libraries/DataFlash/examples/DataFlash_test/DataFlash_test.pde。这里描述了数据的存储结构和数据格式。简单列举如下:
第一点,在.log文件中,我们可以看到如下格式的表达:
FMT, 128, 89, FMT, BBnNZ, Type,Length,Name,Format,Columns
FMT, 129, 23, PARM, Nf, Name,Value
FMT, 130, 45, GPS, BIHBcLLeeEefI,Status,TimeMS,Week,NSats,HDop,Lat,Lng,RelAlt,Alt,Spd,GCrs,VZ,T
FMT, 131, 31, IMU, Iffffff, TimeMS,GyrX,GyrY,GyrZ,AccX,AccY,AccZ
FMT, 132, 67, MSG, Z, Message
第二点,上述格式,对应的代码(参见DataFlash.h):
#define LOG_BASE_STRUCTURES
{ LOG_FORMAT_MSG, sizeof(log_Format),
"FMT", "BBnNZ", "Type,Length,Name,Format,Columns" },
{ LOG_PARAMETER_MSG, sizeof(log_Parameter),
"PARM", "Nf", "Name,Value" },
{ LOG_GPS_MSG, sizeof(log_GPS),
"GPS", "BIHBcLLeeEefI", "Status,TimeMS,Week,NSats,HDop,Lat,Lng,RelAlt,Alt,Spd,GCrs,VZ,T" },
{ LOG_IMU_MSG, sizeof(log_IMU),
"IMU", "Iffffff", "TimeMS,GyrX,GyrY,GyrZ,AccX,AccY,AccZ" },
上述结构,以 LOG_IMU_MSG为例讲解:
信息类型ID |
数据大小 |
信息名称 |
数据类型 |
数据1 |
数据2 |
数据3 |
数据4 |
数据5 |
数据6 |
数据7 |
LOG_IMU_MSG |
sizeof(log_IMU) |
IMU |
Iffffff |
TimeMS |
GyrX |
GyrY |
GyrZ |
AccX |
AccY |
AccZ |
131 |
31(字节) |
IMU |
l:整型; f:浮点 |
整型 46481 |
0.000703 |
-0.000190 |
-0.000359 |
-0.133995 |
0.034236 |
-9.748702 |
第三点,日志文件(.log)的一条数据如下:
IMU, 46481, 0.000703, -0.000190, -0.000359, -0.133995, 0.034236, -9.748702
第四点,消息类型的定义:
// message types for common messages
// 消息类型,,,对应 FMT 中的消息类型,,,见日志文件 .log 文件。
#define LOG_FORMAT_MSG 128
#define LOG_PARAMETER_MSG 129
#define LOG_GPS_MSG 130
#define LOG_IMU_MSG 131
#define LOG_MESSAGE_MSG 132
#define LOG_RCIN_MSG 133
#define LOG_RCOUT_MSG 134
#define LOG_IMU2_MSG 135
…
第五点, log_IMU的结构,共占用 3 + 4 + 12 + 12 = 31字节。
struct PACKED log_IMU {
LOG_PACKET_HEADER; // 3
uint32_t timestamp; // 4
float gyro_x, gyro_y, gyro_z; // 4*3 = 12
float accel_x, accel_y, accel_z; // 4*3 = 12
};
第六点:如果要增加自定义的数据结构,那么可以像以下代码一样增加。
#define LOG_TEST_MSG 1
struct PACKED log_Test {
LOG_PACKET_HEADER;
uint16_t v1, v2, v3, v4;
int32_t l1, l2;
};
static const struct LogStructure log_structure[] PROGMEM = {
LOG_COMMON_STRUCTURES,
{ LOG_TEST_MSG, sizeof(log_Test), // 增加自定义格式数据
"TEST", "HHHHii", "V1,V2,V3,V4,L1,L2" } // 增加自定义格式数据
};
第七点:具体的数据结构操作
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
log_num = DataFlash.StartNewLog();
DataFlash.WriteBlock(&pkt, sizeof(pkt));
DataFlash API隐藏了底层如何存储log文件的细节。另外,对于Pixhawk or Linux这样的支持 Posix IO的系统,日志文件是存储在microSD卡的“LOGS”目录中的。用户可以直接抽出SD卡,直接拷贝到电脑中。
4、Posix IO
有些板子是带操作系统的,支持类似Posix API,如Linux和NuttX。AP_Terrain library就是一个典型的例子。地形数据对于EEPROM是非常的大,经常要随机的存储。DataFlash API就不够灵活了,同时又了Posix IO支持,也就没必要再用DataFlash了。
查看AP_HAL_Boards.h文件,确认HAL_OS_POSIX_IO宏已定义,如下:
#define HAL_OS_POSIX_IO 1 // 带文件系统,has posix-like filesystem IO
下面给出了LOG 和 TERRAIN 文件存放路径:
#define HAL_BOARD_LOG_DIRECTORY "/fs/microsd/APM/LOGS" // LOG 日志文件地址
#define HAL_BOARD_TERRAIN_DIRECTORY "/fs/microsd/APM/TERRAIN" // 地表、地形文件地址
有上述信息,就表示支持Posix IO 功能,另外需要说明的是:
1、Posix IO函数,智能通过IO timer定时器,或者其他低优先级线程调用。IO线程优先级59。
2、不要通过其他API直接调用,哪怕是简单stat()函数,都不可以,除非你长得太帅。
3、尽量少存储,存储数据长度小,尽量少用seek(搜寻)功能。
很简单,一个原则,不要太耗时,影响飞控代码执行。一个简单的针对SD卡的IO操作有可能花上一秒钟,这段时间足够让你的飞行器翻转,垂直掉落,直接炸鸡了。Pixhawk SD卡读写操作一般几毫秒,偶尔花费的时间会很长。现在在你知道这么做了?
相关例程 libraries/AP_Terrain/TerrainIO.cpp,我们会发现处理IO的状态机都是通过AP_Terrain::io_timer调用的。