• 人脸表情识别


    首先非常感谢 zhouzaihang:https://www.52pojie.cn/forum.php?mod=viewthread&tid=863608

     环境和数据集

    环境:pythonpython-opencvkerastensorflow

    其他库,可以安装anaconda,差不多的库都装好了的。

    训练数据:fer2013.csv

    下载地址:链接:https://pan.baidu.com/s/1Ac5XBue0ahLOkIXwa7W77g 提取码:qrue

    总流程:

     

     

    第一步:数据预处理:fer2013.csv = train.csv +test.csv +val.csv ;同时还原出图像数据。

    标签emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']对应0-6命名的文件夹。

    代码:

    import csv
    import os
    from PIL import Image
    import numpy as np
    
    # 读、写数据的地址
    data_path = os.getcwd() + "/data/"
    csv_file = data_path + 'fer2013.csv' # 读数据集地址
    train_csv = data_path + 'train.csv' # 拆数据集保存地址
    val_csv = data_path + 'val.csv'
    test_csv = data_path + 'test.csv'
    
    # csv文件像素保存为图像的文件夹名称
    train_set = os.path.join(data_path, 'train')
    val_set = os.path.join(data_path, 'val')
    test_set = os.path.join(data_path, 'test')
    
    # 开始整理数据集:读
    with open(csv_file) as f:
        csv_r = csv.reader(f)
        header = next(csv_r)
        print(header)
        rows = [row for row in csv_r]
    
        trn = [row[:-1] for row in rows if row[-1] == 'Training']
        csv.writer(open(train_csv, 'w+'), lineterminator='
    ').writerows([header[:-1]] + trn)
        print(len(trn))
    
        val = [row[:-1] for row in rows if row[-1] == 'PublicTest']
        csv.writer(open(val_csv, 'w+'), lineterminator='
    ').writerows([header[:-1]] + val)
        print(len(val))
    
        tst = [row[:-1] for row in rows if row[-1] == 'PrivateTest']
        csv.writer(open(test_csv, 'w+'), lineterminator='
    ').writerows([header[:-1]] + tst)
        print(len(tst))
    
    for save_path, csv_file in [(train_set, train_csv), (val_set, val_csv), (test_set, test_csv)]:
        if not os.path.exists(save_path):
            os.makedirs(save_path)
    
        num = 1
        with open(csv_file) as f:
            csv_r = csv.reader(f)
            header = next(csv_r)
            for i, (label, pixel) in enumerate(csv_r):
                # 0 - 6 文件夹分别label为:
                # angry ,disgust ,fear ,happy ,sad ,surprise ,neutral
                pixel = np.asarray([float(p) for p in pixel.split()]).reshape(48, 48)
                sub_folder = os.path.join(save_path, label)
                if not os.path.exists(sub_folder):
                    os.makedirs(sub_folder)
                im = Image.fromarray(pixel).convert('L')
                image_name = os.path.join(sub_folder, '{:05d}.jpg'.format(i))
                print(image_name)
                im.save(image_name)
    

      

    第二部:训练网络,得到分类器模型。

    定义Model:深度卷积神经网络的构建和训练。

    卷积层conv2D +激活层activation-relu +conv2D + activation-relu +池化层MaxPooling2D +

    conv2D + activation-relu + MaxPooling2D +

    conv2D + activation-relu + MaxPooling2D +

    扁平Flaten + 全连接层Dense + activation-relu +

    丢失部分特征Dropout + Dense + activation-relu +Dropout +

    softmax:Dense + activation-relu

    ``` python
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_1 (Conv2D)            (None, 48, 48, 32)        64        
    _________________________________________________________________
    activation_1 (Activation)    (None, 48, 48, 32)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 48, 48, 32)        25632     
    _________________________________________________________________
    activation_2 (Activation)    (None, 48, 48, 32)        0         
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 24, 24, 32)        0         
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 24, 24, 32)        9248      
    _________________________________________________________________
    activation_3 (Activation)    (None, 24, 24, 32)        0         
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 12, 12, 32)        0         
    _________________________________________________________________
    conv2d_4 (Conv2D)            (None, 12, 12, 64)        51264     
    _________________________________________________________________
    activation_4 (Activation)    (None, 12, 12, 64)        0         
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 6, 6, 64)          0         
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 2304)              0         
    _________________________________________________________________
    dense_1 (Dense)              (None, 2048)              4720640   
    _________________________________________________________________
    activation_5 (Activation)    (None, 2048)              0         
    _________________________________________________________________
    dropout_1 (Dropout)          (None, 2048)              0         
    _________________________________________________________________
    dense_2 (Dense)              (None, 1024)              2098176   
    _________________________________________________________________
    activation_6 (Activation)    (None, 1024)              0         
    _________________________________________________________________
    dropout_2 (Dropout)          (None, 1024)              0         
    _________________________________________________________________
    dense_3 (Dense)              (None, 7)                 7175      
    _________________________________________________________________
    activation_7 (Activation)    (None, 7)                 0         
    =================================================================
    Total params: 6,912,199
    Trainable params: 6,912,199
    Non-trainable params: 0
    _________________________________________________________________
    model built
    Found 28709 images belonging to 7 classes.

    保存网络.json和 模型.h5

    流程:

     

     train.py

    from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
    from keras.models import Sequential
    from keras.preprocessing.image import ImageDataGenerator
    from keras.optimizers import SGD
    
    batch_siz = 128
    num_classes = 7
    nb_epoch = 100
    img_size = 48
    data_path = './data'
    model_path = './model'
    
    class Model:
        def __init__(self):
            self.model = None
    
        def build_model(self):
            self.model = Sequential()
    
            self.model.add(Conv2D(32, (1, 1), strides=1, padding='same', input_shape=(img_size, img_size, 1)))
            self.model.add(Activation('relu'))
            self.model.add(Conv2D(32, (5, 5), padding='same'))
            self.model.add(Activation('relu'))
            self.model.add(MaxPooling2D(pool_size=(2, 2)))     #池化,每个块只留下max
    
            self.model.add(Conv2D(32, (3, 3), padding='same'))
            self.model.add(Activation('relu'))
            self.model.add(MaxPooling2D(pool_size=(2, 2)))
    
            self.model.add(Conv2D(64, (5, 5), padding='same'))
            self.model.add(Activation('relu'))
            self.model.add(MaxPooling2D(pool_size=(2, 2)))
    
            self.model.add(Flatten())       # 扁平,折叠成一维的数组
            self.model.add(Dense(2048))     # 全连接神经网络层
            self.model.add(Activation('relu'))
            self.model.add(Dropout(0.5))    # 忽略一半的特征检测器
            self.model.add(Dense(1024))
            self.model.add(Activation('relu'))
            self.model.add(Dropout(0.5))
            self.model.add(Dense(num_classes))
            self.model.add(Activation('softmax'))
            self.model.summary()            # 参数输出
    
        def train_model(self):
            sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)  #随机梯度下降的方向训练权重
            self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
            # 自动扩充训练样本
            train_datagen = ImageDataGenerator(
                rescale=1. / 255,
                shear_range=0.2,
                zoom_range=0.2,
                horizontal_flip=True)
            # 归一化验证集
            val_datagen = ImageDataGenerator(
                rescale=1. / 255)
            eval_datagen = ImageDataGenerator(
                rescale=1. / 255)
            # 以文件分类名划分label
            train_generator = train_datagen.flow_from_directory(
                data_path + '/train',
                target_size=(img_size, img_size),
                color_mode='grayscale',
                batch_size=batch_siz,
                class_mode='categorical')
            val_generator = val_datagen.flow_from_directory(
                data_path + '/val',
                target_size=(img_size, img_size),
                color_mode='grayscale',
                batch_size=batch_siz,
                class_mode='categorical')
            eval_generator = eval_datagen.flow_from_directory(
                data_path + '/test',
                target_size=(img_size, img_size),
                color_mode='grayscale',
                batch_size=batch_siz,
                class_mode='categorical')
            # early_stopping = EarlyStopping(monitor='loss', patience=3)
            history_fit = self.model.fit_generator(
                train_generator,
                steps_per_epoch=800 / (batch_siz / 32),  # 28709
                nb_epoch=nb_epoch,
                validation_data=val_generator,
                validation_steps=2000,
                # callbacks=[early_stopping]
            )
            #         history_eval=self.model.evaluate_generator(
            #                 eval_generator,
            #                 steps=2000)
            history_predict = self.model.predict_generator(
                eval_generator,
                steps=2000)
            with open(model_path + '/model_fit_log', 'w') as f:
                f.write(str(history_fit.history))
            with open(model_path + '/model_predict_log', 'w') as f:
                f.write(str(history_predict))
    
        # 保存训练的模型文件
        def save_model(self):
            model_json = self.model.to_json()
            with open(model_path + "/model_json.json", "w") as json_file:
                json_file.write(model_json)
            self.model.save_weights(model_path + '/model_weight.h5')
            self.model.save(model_path + '/model.h5')
    
    
    if __name__ == '__main__':
        model = Model()
        model.build_model()
        print('model built')
        model.train_model()
        print('model trained')
        model.save_model()
        print('model saved')
    

      

    第三步:使用模型,预测表情。

    predictFER.py

    #!/usr/bin/python
    # -*- coding = utf-8 -*-
    #author:thy
    #date:20191230
    #version:1.0
    import cv2
    import numpy as np
    from keras.models import model_from_json
    
    model_path = './model/'
    img_size = 48
    emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
    num_class = len(emotion_labels)
    
    # 从json中加载模型
    json_file = open(model_path + 'model_json.json')
    loaded_model_json = json_file.read()
    json_file.close()
    model = model_from_json(loaded_model_json)
    
    # 加载模型权重
    model.load_weights(model_path + 'model_weight.h5')
    
    # 创建VideoCapture对象
    capture = cv2.VideoCapture(0)
    
    # 使用opencv的人脸分类器
    cascade = cv2.CascadeClassifier(model_path + 'haarcascade_frontalface_alt.xml')
    
    while True:
        ret, frame = capture.read()
    
        # 灰度化处理
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    
        # 呈现用emoji替代后的画面
        emoji_show = frame.copy()
    
        # 识别人脸位置
        faceLands = cascade.detectMultiScale(gray, scaleFactor=1.1,
                                             minNeighbors=1, minSize=(120, 120))
    
        if len(faceLands) > 0:
            for faceLand in faceLands:
                x, y, w, h = faceLand
                images = []
                result = np.array([0.0] * num_class)
    
                # 裁剪出脸部图像
                image = cv2.resize(gray[y:y + h, x:x + w], (img_size, img_size))
                image = image / 255.0
                image = image.reshape(1, img_size, img_size, 1)
    
                # 调用模型预测情绪
                predict_lists = model.predict_proba(image, batch_size=32, verbose=1)
                # print(predict_lists)
                result += np.array([predict for predict_list in predict_lists
                                    for predict in predict_list])
                # print(result)
                emotion = emotion_labels[int(np.argmax(result))]
                print("Emotion:", emotion)
    
                # 框出脸部并且写上标签
                cv2.rectangle(frame, (x - 20, y - 20), (x + w + 20, y + h + 20),
                              (0, 255, 255), thickness=10)
                cv2.putText(frame, '%s' % emotion, (x, y - 50),
                            cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 2, 30)
                cv2.imshow('Face', frame)
    
            if cv2.waitKey(60) == ord('q'):
                break
    
    # 释放摄像头并销毁所有窗口
    capture.release()
    cv2.destroyAllWindows()
    

      

    结论:

    实现摄像头检测到的人脸的表情标记。

    开放源码:https://github.com/beauthy/FER_model2pb

  • 相关阅读:
    BOM-DOM
    JavaScript
    CSS(2)
    CSS(1)
    HTML5
    索引
    数据库多表查询
    数据操作
    数据库表操作
    初识Java
  • 原文地址:https://www.cnblogs.com/philothypeipei/p/12122149.html
Copyright © 2020-2023  润新知