• 关于opencv3.2的parallel_for_函数不支持bind function的处理(基于ch8代码)


    1.换opencv4

    2.修改程序

    改程序针对slambook2/ch8/direct_method.cpp

    #include <opencv2/opencv.hpp>
    #include <sophus/se3.hpp>
    #include <boost/format.hpp>
    #include <pangolin/pangolin.h>
    
    using namespace std;
    
    typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
    
    // Camera intrinsics
    double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
    // baseline
    double baseline = 0.573;
    // paths
    string left_file = "../left.png";
    string disparity_file = "../disparity.png";
    boost::format fmt_others("../%06d.png");    // other files
    
    // useful typedefs
    typedef Eigen::Matrix<double, 6, 6> Matrix6d;
    typedef Eigen::Matrix<double, 2, 6> Matrix26d;
    typedef Eigen::Matrix<double, 6, 1> Vector6d;
    
    /**
     * pose estimation using direct method
     * @param img1
     * @param img2
     * @param px_ref
     * @param depth_ref
     * @param T21
     */
    void DirectPoseEstimationMultiLayer(
            const cv::Mat &img1,
            const cv::Mat &img2,
            const VecVector2d &px_ref,
            const vector<double> depth_ref,
            Sophus::SE3d &T21
    );
    
    /**
     * pose estimation using direct method
     * @param img1
     * @param img2
     * @param px_ref
     * @param depth_ref
     * @param T21
     */
    void DirectPoseEstimationSingleLayer(
            const cv::Mat &img1,
            const cv::Mat &img2,
            const VecVector2d &px_ref,
            const vector<double> depth_ref,
            Sophus::SE3d &T21
    );
    
    // bilinear interpolation
    inline float GetPixelValue(const cv::Mat &img, float x, float y) {
        // boundary check
        if (x < 0) x = 0;
        if (y < 0) y = 0;
        if (x >= img.cols) x = img.cols - 1;
        if (y >= img.rows) y = img.rows - 1;
        uchar *data = &img.data[int(y) * img.step + int(x)];
        float xx = x - floor(x);
        float yy = y - floor(y);
        return float(
                (1 - xx) * (1 - yy) * data[0] +
                xx * (1 - yy) * data[1] +
                (1 - xx) * yy * data[img.step] +
                xx * yy * data[img.step + 1]
        );
    }
    
    /// class for accumulator jacobians in parallel
    class JacobianAccumulator: public cv::ParallelLoopBody {
    private:
        const cv::Mat &img1;
        const cv::Mat &img2;
        const VecVector2d &px_ref;
        const vector<double> depth_ref;
        Sophus::SE3d &T21;
        mutable VecVector2d projection; // projected points
    
        mutable std::mutex hessian_mutex;
        mutable Matrix6d H = Matrix6d::Zero();
        mutable Vector6d b = Vector6d::Zero();
        mutable double cost = 0;
    
    public:
        JacobianAccumulator(
            const cv::Mat &img1_,
            const cv::Mat &img2_,
            const VecVector2d &px_ref_,
            const vector<double> depth_ref_,
            Sophus::SE3d &T21_) :
            img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
            projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
        }
    
        /// accumulate jacobians in a range
    //    void accumulate_jacobian(const cv::Range &range);
    
    
        /// get hessian matrix
        Matrix6d hessian() const { return H; }
    
        /// get bias
        Vector6d bias() const { return b; }
    
        /// get total cost
        double cost_func() const { return cost; }
    
        /// get projected points
        VecVector2d projected_points() const { return projection; }
    
        /// reset h, b, cost to zero
        void reset() {
            H = Matrix6d::Zero();
            b = Vector6d::Zero();
            cost = 0;
        }
    
        virtual void operator()(const cv::Range& range) const {
    
            // parameters
            const int half_patch_size = 1;
            int cnt_good = 0;
            Matrix6d hessian = Matrix6d::Zero();
            Vector6d bias = Vector6d::Zero();
            double cost_tmp = 0;
    
            for (size_t i = range.start; i < range.end; i++) {
    
                // compute the projection in the second image
                Eigen::Vector3d point_ref =
                        depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
                Eigen::Vector3d point_cur = T21 * point_ref;
                if (point_cur[2] < 0)   // depth invalid
                    continue;
    
                float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
                if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
                    v > img2.rows - half_patch_size)
                    continue;
    
                projection[i] = Eigen::Vector2d(u, v);
                double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
                        Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
                cnt_good++;
    
                // and compute error and jacobian
                for (int x = -half_patch_size; x <= half_patch_size; x++)
                    for (int y = -half_patch_size; y <= half_patch_size; y++) {
    
                        double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                                       GetPixelValue(img2, u + x, v + y);
                        Matrix26d J_pixel_xi;
                        Eigen::Vector2d J_img_pixel;
    
                        J_pixel_xi(0, 0) = fx * Z_inv;
                        J_pixel_xi(0, 1) = 0;
                        J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                        J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                        J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                        J_pixel_xi(0, 5) = -fx * Y * Z_inv;
    
                        J_pixel_xi(1, 0) = 0;
                        J_pixel_xi(1, 1) = fy * Z_inv;
                        J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                        J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                        J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                        J_pixel_xi(1, 5) = fy * X * Z_inv;
    
                        J_img_pixel = Eigen::Vector2d(
                                0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                                0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                        );
    
                        // total jacobian
                        Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();
    
                        hessian += J * J.transpose();
                        bias += -error * J;
                        cost_tmp += error * error;
                    }
            }
    
            if (cnt_good) {
                // set hessian, bias and cost
                unique_lock<mutex> lck(hessian_mutex);
                H += hessian;
                b += bias;
                cost += cost_tmp / cnt_good;
            }
        }
    
    
    };
    
    
    
    int main(int argc, char **argv) {
    
        cv::Mat left_img = cv::imread(left_file, 0);
        cv::Mat disparity_img = cv::imread(disparity_file, 0);
        if (left_img.empty() || disparity_img.empty())
        {
            std::cout << "!!! Failed imread(): image not found" << std::endl;
            return 1;
        }
        // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
        cv::RNG rng;
        int nPoints = 2000;
        int boarder = 20;
        VecVector2d pixels_ref;
        vector<double> depth_ref;
        cout << "left_img.cols" << left_img.cols << endl;
        cout << "left_img: " << left_img << endl;
        // generate pixels in ref and load depth data
        for (int i = 0; i < nPoints; i++) {
            int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarder
            int y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarder
            int disparity = disparity_img.at<uchar>(y, x);
            double depth = fx * baseline / disparity; // you know this is disparity to depth
            depth_ref.push_back(depth);
            pixels_ref.push_back(Eigen::Vector2d(x, y));
        }
    
        // estimates 01~05.png's pose using this information
        Sophus::SE3d T_cur_ref;
    
        for (int i = 1; i < 6; i++) {  // 1~10
            cv::Mat img = cv::imread((fmt_others % i).str(), 0);
            // try single layer by uncomment this line
            // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
            DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
        }
        return 0;
    }
    
    void DirectPoseEstimationSingleLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {
    
        const int iterations = 10;
        double cost = 0, lastCost = 0;
        auto t1 = chrono::steady_clock::now();
        JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);
    
        for (int iter = 0; iter < iterations; iter++) {
            jaco_accu.reset();
            cv::parallel_for_(cv::Range(0, px_ref.size()), jaco_accu);
            Matrix6d H = jaco_accu.hessian();
            Vector6d b = jaco_accu.bias();
    
            // solve update and put it into estimation
            Vector6d update = H.ldlt().solve(b);;
            T21 = Sophus::SE3d::exp(update) * T21;
            cost = jaco_accu.cost_func();
    
            if (std::isnan(update[0])) {
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                break;
            }
            if (iter > 0 && cost > lastCost) {
                cout << "cost increased: " << cost << ", " << lastCost << endl;
                break;
            }
            if (update.norm() < 1e-3) {
                // converge
                break;
            }
    
            lastCost = cost;
            cout << "iteration: " << iter << ", cost: " << cost << endl;
        }
    
        cout << "T21 = 
    " << T21.matrix() << endl;
        auto t2 = chrono::steady_clock::now();
        auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
        cout << "direct method for single layer: " << time_used.count() << endl;
    
        // plot the projected pixels here
        cv::Mat img2_show;
        cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
        VecVector2d projection = jaco_accu.projected_points();
        for (size_t i = 0; i < px_ref.size(); ++i) {
            auto p_ref = px_ref[i];
            auto p_cur = projection[i];
            if (p_cur[0] > 0 && p_cur[1] > 0) {
                cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
                cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                         cv::Scalar(0, 250, 0));
            }
        }
        cv::imshow("current", img2_show);
        cv::waitKey();
    }
    
    
    void DirectPoseEstimationMultiLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {
    
        // parameters
        int pyramids = 4;
        double pyramid_scale = 0.5;
        double scales[] = {1.0, 0.5, 0.25, 0.125};
    
        // create pyramids
        vector<cv::Mat> pyr1, pyr2; // image pyramids
        for (int i = 0; i < pyramids; i++) {
            if (i == 0) {
                pyr1.push_back(img1);
                pyr2.push_back(img2);
            } else {
                cv::Mat img1_pyr, img2_pyr;
                cv::resize(pyr1[i - 1], img1_pyr,
                           cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
                cv::resize(pyr2[i - 1], img2_pyr,
                           cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
                pyr1.push_back(img1_pyr);
                pyr2.push_back(img2_pyr);
            }
        }
    
        double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values
        for (int level = pyramids - 1; level >= 0; level--) {
            VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
            for (auto &px: px_ref) {
                px_ref_pyr.push_back(scales[level] * px);
            }
    
            // scale fx, fy, cx, cy in different pyramid levels
            fx = fxG * scales[level];
            fy = fyG * scales[level];
            cx = cxG * scales[level];
            cy = cyG * scales[level];
            DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
        }
    
    }
    
  • 相关阅读:
    2018 秋招找工作总结
    Java 实现 LRU 缓存
    历时2个月,星云链DApp开发总结
    Java 版快速排序 + 最挫的优化
    MacOS 下防止 rm 命令误删
    Java使用Log日志系统(common-logging和log4j)
    IDEA+Maven+Spring+SpringMVC+SpringJDBC整合Demo
    Java简单实现并发编程
    设计模式学习笔记——单例模式
    Java获取网页内容
  • 原文地址:https://www.cnblogs.com/penuel/p/14410953.html
Copyright © 2020-2023  润新知