• 视觉十四讲:第七讲_3D-2D:P3P


    1.P3P

    P3P输入数据为三对3D-2D的匹配点,一个单目相机,经过初始化,得到初始的3D点,就可以依次得到后续的姿态和3D点。

    ABC是上一时刻求的的3D点, abc是与上一次时刻的匹配点。利用相似原理,可求出abc在相机坐标下的3D坐标,最后就可以把问题转换为3D-3D坐标的估计问题。

    • 问题:只利用3个点,不能运用多余的信息;受噪声影响,存在无匹配,容易算法失败

    通常做法是用P3P估计出相机位姿,然后再构建最小二乘优化问题对估计值进行优化调整(Bundle Adjustment)

    2.使用Pnp来求解

    int main(int argc, char **argv) {
      if (argc != 5) {
        cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
        return 1;
      }
      //-- 读取图像
      Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
      Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
      assert(img_1.data && img_2.data && "Can not load images!");
    
      vector<KeyPoint> keypoints_1, keypoints_2;
      vector<DMatch> matches;
      //获取匹配点
      find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); 
      cout << "一共找到了" << matches.size() << "组匹配点" << endl;
    
      // 建立3D点
      Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED);       // 第一张图的深度图为16位无符号数,单通道图像
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      vector<Point3f> pts_3d;
      vector<Point2f> pts_2d;
      for (DMatch m:matches) {
    	//取出第一张图匹配点的深度数据
        //Mat.ptr<>(行)[列]
        ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
        if (d == 0)   // bad depth
          continue;
        float dd = d / 5000.0;
    	//将图1的匹配点的像素坐标转相机归一化坐标
        Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
    	//转换为相机坐标的3D点
        pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
    	//获取图2的匹配点的像素坐标
        pts_2d.push_back(keypoints_2[m.trainIdx].pt);
      }
    
      cout << "3d-2d pairs: " << pts_3d.size() << endl;
    
      /**************pnp**************/
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      Mat r, t;
      solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
      Mat R;
      cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;
    
      cout << "R=" << endl << R << endl;
      cout << "t=" << endl << t << endl;
    }
    

    3.使用高斯牛顿法来优化求解

    1.构建最小二乘问题:

    (T^{*}=argminfrac{1}{2} displaystyle sum^{n}_{i=1}||u_{i}-frac{1}{s_{i}}KTP_{i}||^{2}_{2})
    误差是观测像素点-投影像素点,称为重投影误差

    使用高斯牛顿法的重点在于求误差项对于每个优化变量的导数
    线性化:(e(x+Delta x) approx e(x) + J^{T}Delta x)

    高斯的增量方程为: ((displaystyle sum^{100}_{i=1} J_{i}(sigma^{2})^{-1} J_{i}^{T})Delta x_{k}=displaystyle sum^{100}_{i=1} -J_{i}(sigma^{2})^{-1} e_{i})
    (HDelta x_{k}=b)

    2.求雅可比矩阵:

    1.使用非齐次坐标,像素误差e是2维,x为相机位姿是6维,(J^{T})是一个2*6的矩阵。
    2.将P变换到相机坐标下为(P^{'}=[X^{'},Y^{'},Z^{'}]^{T}),则:(su=KP^{'})
    3.消去s得:(u=f_{x}frac{X^{'}}{Z^{'}}+c_{x}) (v=f_{y}frac{Y^{'}}{Z^{'}}+c_{y})
    4.对T左乘扰动量(delta xi),考虑e的变化关于扰动量的导数。则(frac{partial e}{partial delta xi}= frac{partial e}{partial P^{'}} frac{partial P^{'}}{partial delta xi})
    5.容易得出(frac{partial e}{partial P^{'}}) = (-left[ egin{matrix} frac{f_{x}}{Z^{'}} & 0 & -frac{f_{x}X^{'}}{Z^{'2}} \ 0 & frac{f_{y}}{Z^{'}} & -frac{f_{y}Y^{'}}{Z^{'2}} end{matrix} ight])
    6.由李代数导数得:(frac{partial (TP)}{partial delta xi} = left[ egin{matrix} I & -P^{' Lambda} \ 0^{T} & 0^{T} end{matrix} ight])
    7.在(P^{'})的定义中,取了前三维,所以(frac{partial P^{'}}{partial delta xi} = left[ egin{matrix} I & -P^{' Lambda} end{matrix} ight])
    8.将两个式子相乘就可以得到雅可比矩阵:
    (frac{partial e}{partial delta xi} = - left[ egin{matrix} frac{f_{x}}{Z^{'}} & 0 & -frac{f_{x}X^{'}}{Z^{'2}} & -frac{f_{x}X^{'}Y^{'}}{Z^{'2}} & f_{x} + frac{f_{x}X^{'2}}{Z^{'2}} &- frac{f_{x}Y^{'}}{Z^{'}} \ 0 & frac{f_{y}}{Z^{'}} & -frac{f_{y}Y^{'}}{Z^{'2}} & -f_{y} - frac{f_{y}Y^{'2}}{Z^{'2}} & frac{f_{y}X^{'}Y^{'}}{Z^{'2}} & frac{f_{y}X^{'}}{Z^{'}} end{matrix} ight])

    3.程序:
    void bundleAdjustmentGaussNewton(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
      typedef Eigen::Matrix<double, 6, 1> Vector6d;
      const int iterations = 10;
      double cost = 0, lastCost = 0;
      double fx = K.at<double>(0, 0);
      double fy = K.at<double>(1, 1);
      double cx = K.at<double>(0, 2);
      double cy = K.at<double>(1, 2);
    
      for (int iter = 0; iter < iterations; iter++) {
        Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
        Vector6d b = Vector6d::Zero();
    
        cost = 0;
        // compute cost
        for (int i = 0; i < points_3d.size(); i++) {
    	  //世界坐标转为相机坐标
          Eigen::Vector3d pc = pose * points_3d[i];
          double inv_z = 1.0 / pc[2];
          double inv_z2 = inv_z * inv_z;
    	  //相机坐标转为像素坐标
          Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
    
          Eigen::Vector2d e = points_2d[i] - proj;  //误差,观测值-预测值,反之取负
    
          cost += e.squaredNorm();  //误差里的每项平方和
          Eigen::Matrix<double, 2, 6> J;
    	  //雅可比矩阵赋值
          J << -fx * inv_z,
            0,
            fx * pc[0] * inv_z2,
            fx * pc[0] * pc[1] * inv_z2,
            -fx - fx * pc[0] * pc[0] * inv_z2,
            fx * pc[1] * inv_z,
            0,
            -fy * inv_z,
            fy * pc[1] * inv_z2,
            fy + fy * pc[1] * pc[1] * inv_z2,
            -fy * pc[0] * pc[1] * inv_z2,
            -fy * pc[0] * inv_z;
    
          H += J.transpose() * J;
          b += -J.transpose() * e;
        }
    
        Vector6d dx;
        dx = H.ldlt().solve(b);
    
        if (isnan(dx[0])) {
          cout << "result is nan!" << endl;
          break;
        }
    
        if (iter > 0 && cost >= lastCost) {
          // cost increase, update is not good
          cout << "cost: " << cost << ", last cost: " << lastCost << endl;
          break;
        }
    
        // update your estimation
    	//更新位姿
        pose = Sophus::SE3d::exp(dx) * pose;
        lastCost = cost;
    
        cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
      //范数,误差足够小
        if (dx.norm() < 1e-6) {
          // converge
          break;
        }
      }
    
      cout << "pose by g-n: 
    " << pose.matrix() << endl;
    }
    

    4.使用g2o来进行BA优化

    • 节点(待优化的变量): 第二个相机的位姿 (T in SE(3))
    • 边(误差): 每个3D在第二个相机中的投影
    1.构建节点和边框架:
    // 曲线模型的顶点,模板参数:优化变量维度和数据类型
    class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    
      // 初始化
      virtual void setToOriginImpl() override {
        _estimate = Sophus::SE3d();
      }
    
      //更新估计值
      virtual void oplusImpl(const double *update) override {
        Eigen::Matrix<double, 6, 1> update_eigen;
        update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
        _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    };
    
    // 误差模型 模板参数:观测值维度,类型,连接顶点类型
    class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
      //输入的变量:位姿,相机内参
      EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}
    
      //计算误差
      virtual void computeError() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        //获取估计值
        Sophus::SE3d T = v->estimate();
        //将3D世界坐标转为相机像素坐标
        Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
        //归一化
        pos_pixel /= pos_pixel[2];
        //计算误差
        _error = _measurement - pos_pixel.head<2>();
      }
    
      //计算雅可比矩阵,公式上面已推导
      virtual void linearizeOplus() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        Sophus::SE3d T = v->estimate();
        //世界坐标转化为相机坐标
        Eigen::Vector3d pos_cam = T * _pos3d;
        //获取相机内参
        double fx = _K(0, 0);
        double fy = _K(1, 1);
        double cx = _K(0, 2);
        double cy = _K(1, 2);
        double X = pos_cam[0];
        double Y = pos_cam[1];
        double Z = pos_cam[2];
        double Z2 = Z * Z;
        //传入雅可比矩阵参数
        _jacobianOplusXi
          << -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
          0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    
    private:
      Eigen::Vector3d _pos3d;
      Eigen::Matrix3d _K;
    };
    
    2.组成图优化:
    void bundleAdjustmentG2O(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
    
      // 构建图优化,先设定g2o
      typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 3>> BlockSolverType;  // 位姿维度为6,误差维度为3
      typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
      // 梯度下降方法,可以从GN, LM, DogLeg 中选
      auto solver = new g2o::OptimizationAlgorithmGaussNewton(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
      g2o::SparseOptimizer optimizer;     // 图模型
      optimizer.setAlgorithm(solver);   // 设置求解器
      optimizer.setVerbose(true);       // 打开调试输出
    
      // 往图中添加节点
      VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
      vertex_pose->setId(0);
      vertex_pose->setEstimate(Sophus::SE3d());
      optimizer.addVertex(vertex_pose);
    
      // K 相机内参
      Eigen::Matrix3d K_eigen;
      K_eigen <<
              K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
        K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
        K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);
    
      // edges 边
      int index = 1;
      for (size_t i = 0; i < points_2d.size(); ++i) {
        auto p2d = points_2d[i];
        auto p3d = points_3d[i];
        EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
        edge->setId(index);
        edge->setVertex(0, vertex_pose); // 设置连接的顶点
        edge->setMeasurement(p2d);  //传入观测值
        edge->setInformation(Eigen::Matrix2d::Identity()); // 信息矩阵
        optimizer.addEdge(edge);
        index++;
      }
    
      //执行优化
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      optimizer.setVerbose(true);
      optimizer.initializeOptimization();
      optimizer.optimize(10);
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
      //获取结果
      cout << "pose estimated by g2o =
    " << vertex_pose->estimate().matrix() << endl;
      pose = vertex_pose->estimate();
    }
    

    5.完整代码

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <Eigen/Core>
    #include <g2o/core/base_vertex.h>
    #include <g2o/core/base_unary_edge.h>
    #include <g2o/core/sparse_optimizer.h>
    #include <g2o/core/block_solver.h>
    #include <g2o/core/solver.h>
    #include <g2o/core/optimization_algorithm_gauss_newton.h>
    #include <g2o/solvers/dense/linear_solver_dense.h>
    #include <sophus/se3.hpp>
    #include <chrono>
    
    using namespace std;
    using namespace cv;
    
    void find_feature_matches(
      const Mat &img_1, const Mat &img_2,
      std::vector<KeyPoint> &keypoints_1,
      std::vector<KeyPoint> &keypoints_2,
      std::vector<DMatch> &matches);
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam(const Point2d &p, const Mat &K);
    
    // BA by g2o
    //STL容器中的元素是Eigen的数据结构,例如这里定义一个vector容器,元素是Vector2d 
    typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
    typedef vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> VecVector3d;
    
    void bundleAdjustmentG2O(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose
    );
    
    // BA by gauss-newton
    void bundleAdjustmentGaussNewton(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose
    );
    
    int main(int argc, char **argv) {
      if (argc != 5) {
        cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
        return 1;
      }
      //-- 读取图像
      Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
      Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
      assert(img_1.data && img_2.data && "Can not load images!");
    
      vector<KeyPoint> keypoints_1, keypoints_2;
      vector<DMatch> matches;
      //获取匹配点
      find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); 
      cout << "一共找到了" << matches.size() << "组匹配点" << endl;
    
      // 建立3D点
      Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED);       // 第一张图的深度图为16位无符号数,单通道图像
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      vector<Point3f> pts_3d;
      vector<Point2f> pts_2d;
      for (DMatch m:matches) {
    	//取出第一张图匹配点的深度数据
        ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
        if (d == 0)   // bad depth
          continue;
        float dd = d / 5000.0;
    	//将图1的匹配点的像素坐标转相机归一化坐标
        Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
    	//转换为相机坐标的3D点
        pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
    	//获取图2的匹配点的像素坐标
        pts_2d.push_back(keypoints_2[m.trainIdx].pt);
      }
    
      cout << "3d-2d pairs: " << pts_3d.size() << endl;
    
      /**************pnp**************/
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      Mat r, t;
      solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
      Mat R;
      cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;
    
      cout << "R=" << endl << R << endl;
      cout << "t=" << endl << t << endl;
      /********************************/
      
    
      VecVector3d pts_3d_eigen;
      VecVector2d pts_2d_eigen;
      //
      for (size_t i = 0; i < pts_3d.size(); ++i) {
    	//图1的3D点
        pts_3d_eigen.push_back(Eigen::Vector3d(pts_3d[i].x, pts_3d[i].y, pts_3d[i].z));
    	//图2的2D点
        pts_2d_eigen.push_back(Eigen::Vector2d(pts_2d[i].x, pts_2d[i].y));
      }
    
      //高斯牛顿法优化
      cout << "calling bundle adjustment by gauss newton" << endl;
      Sophus::SE3d pose_gn;
      t1 = chrono::steady_clock::now();
      bundleAdjustmentGaussNewton(pts_3d_eigen, pts_2d_eigen, K, pose_gn);
      t2 = chrono::steady_clock::now();
      time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp by gauss newton cost time: " << time_used.count() << " seconds." << endl;
    
      //g2o优化
      cout << "calling bundle adjustment by g2o" << endl;
      Sophus::SE3d pose_g2o;
      t1 = chrono::steady_clock::now();
      bundleAdjustmentG2O(pts_3d_eigen, pts_2d_eigen, K, pose_g2o);
      t2 = chrono::steady_clock::now();
      time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp by g2o cost time: " << time_used.count() << " seconds." << endl;
      return 0;
    }
    
    void find_feature_matches(const Mat &img_1, const Mat &img_2,
                              std::vector<KeyPoint> &keypoints_1,
                              std::vector<KeyPoint> &keypoints_2,
                              std::vector<DMatch> &matches) {
      //-- 初始化
      Mat descriptors_1, descriptors_2;
      // used in OpenCV3
      Ptr<FeatureDetector> detector = ORB::create();
      Ptr<DescriptorExtractor> descriptor = ORB::create();
      // use this if you are in OpenCV2
      // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
      // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
      Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
      //-- 第一步:检测 Oriented FAST 角点位置
      detector->detect(img_1, keypoints_1);
      detector->detect(img_2, keypoints_2);
    
      //-- 第二步:根据角点位置计算 BRIEF 描述子
      descriptor->compute(img_1, keypoints_1, descriptors_1);
      descriptor->compute(img_2, keypoints_2, descriptors_2);
    
      //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
      vector<DMatch> match;
      // BFMatcher matcher ( NORM_HAMMING );
      matcher->match(descriptors_1, descriptors_2, match);
    
      //-- 第四步:匹配点对筛选
      double min_dist = 10000, max_dist = 0;
    
      //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
      for (int i = 0; i < descriptors_1.rows; i++) {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
      }
    
      printf("-- Max dist : %f 
    ", max_dist);
      printf("-- Min dist : %f 
    ", min_dist);
    
      //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
      for (int i = 0; i < descriptors_1.rows; i++) {
        if (match[i].distance <= max(2 * min_dist, 30.0)) {
          matches.push_back(match[i]);
        }
      }
    }
    
    Point2d pixel2cam(const Point2d &p, const Mat &K) {
      return Point2d
        (
          (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
          (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
        );
    }
    
    void bundleAdjustmentGaussNewton(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
      typedef Eigen::Matrix<double, 6, 1> Vector6d;
      const int iterations = 10;
      double cost = 0, lastCost = 0;
      double fx = K.at<double>(0, 0);
      double fy = K.at<double>(1, 1);
      double cx = K.at<double>(0, 2);
      double cy = K.at<double>(1, 2);
    
      for (int iter = 0; iter < iterations; iter++) {
        Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
        Vector6d b = Vector6d::Zero();
    
        cost = 0;
        // compute cost
        for (int i = 0; i < points_3d.size(); i++) {
    	  //世界坐标转为相机坐标
          Eigen::Vector3d pc = pose * points_3d[i];
          double inv_z = 1.0 / pc[2];
          double inv_z2 = inv_z * inv_z;
    	  //相机坐标转为像素坐标
          Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
    
          Eigen::Vector2d e = points_2d[i] - proj;  //误差,观测值-预测值,反之取负
    
          cost += e.squaredNorm();  //误差里的每项平方和
          Eigen::Matrix<double, 2, 6> J;
    	  //雅可比矩阵赋值
          J << -fx * inv_z,
            0,
            fx * pc[0] * inv_z2,
            fx * pc[0] * pc[1] * inv_z2,
            -fx - fx * pc[0] * pc[0] * inv_z2,
            fx * pc[1] * inv_z,
            0,
            -fy * inv_z,
            fy * pc[1] * inv_z2,
            fy + fy * pc[1] * pc[1] * inv_z2,
            -fy * pc[0] * pc[1] * inv_z2,
            -fy * pc[0] * inv_z;
    
          H += J.transpose() * J;
          b += -J.transpose() * e;
        }
    
        Vector6d dx;
        dx = H.ldlt().solve(b);
    
        if (isnan(dx[0])) {
          cout << "result is nan!" << endl;
          break;
        }
    
        if (iter > 0 && cost >= lastCost) {
          // cost increase, update is not good
          cout << "cost: " << cost << ", last cost: " << lastCost << endl;
          break;
        }
    
        // update your estimation
    	//更新位姿
        pose = Sophus::SE3d::exp(dx) * pose;
        lastCost = cost;
    
        cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
        if (dx.norm() < 1e-6) {
          // converge
          break;
        }
      }
    
      cout << "pose by g-n: 
    " << pose.matrix() << endl;
    }
    
    /// vertex and edges used in g2o ba
    class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    
      virtual void setToOriginImpl() override {
        _estimate = Sophus::SE3d();
      }
    
      /// left multiplication on SE3
      virtual void oplusImpl(const double *update) override {
        Eigen::Matrix<double, 6, 1> update_eigen;
        update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
        _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    };
    
    class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    
      EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}
    
      virtual void computeError() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        Sophus::SE3d T = v->estimate();
        Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
        pos_pixel /= pos_pixel[2];
        _error = _measurement - pos_pixel.head<2>();
      }
    
      virtual void linearizeOplus() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        Sophus::SE3d T = v->estimate();
        Eigen::Vector3d pos_cam = T * _pos3d;
        double fx = _K(0, 0);
        double fy = _K(1, 1);
        double cx = _K(0, 2);
        double cy = _K(1, 2);
        double X = pos_cam[0];
        double Y = pos_cam[1];
        double Z = pos_cam[2];
        double Z2 = Z * Z;
        _jacobianOplusXi
          << -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
          0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    
    private:
      Eigen::Vector3d _pos3d;
      Eigen::Matrix3d _K;
    };
    
    void bundleAdjustmentG2O(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
    
      // 构建图优化,先设定g2o
      typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 3>> BlockSolverType;  // pose is 6, landmark is 3
      typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
      // 梯度下降方法,可以从GN, LM, DogLeg 中选
      auto solver = new g2o::OptimizationAlgorithmGaussNewton(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
      g2o::SparseOptimizer optimizer;     // 图模型
      optimizer.setAlgorithm(solver);   // 设置求解器
      optimizer.setVerbose(true);       // 打开调试输出
    
      // vertex
      VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
      vertex_pose->setId(0);
      vertex_pose->setEstimate(Sophus::SE3d());
      optimizer.addVertex(vertex_pose);
    
      // K
      Eigen::Matrix3d K_eigen;
      K_eigen <<
              K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
        K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
        K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);
    
      // edges
      int index = 1;
      for (size_t i = 0; i < points_2d.size(); ++i) {
        auto p2d = points_2d[i];
        auto p3d = points_3d[i];
        EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
        edge->setId(index);
        edge->setVertex(0, vertex_pose);
        edge->setMeasurement(p2d);
        edge->setInformation(Eigen::Matrix2d::Identity());
        optimizer.addEdge(edge);
        index++;
      }
    
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      optimizer.setVerbose(true);
      optimizer.initializeOptimization();
      optimizer.optimize(10);
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
      cout << "pose estimated by g2o =
    " << vertex_pose->estimate().matrix() << endl;
      pose = vertex_pose->estimate();
    }
    
    

    CMakeLists.txt:

    cmake_minimum_required(VERSION 2.8)
    project(3d2d)
    
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
    list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
    include_directories(inc)
    aux_source_directory(src DIR_SRCS)
    SET(SOUR_FILE ${DIR_SRCS})
    find_package(OpenCV 3 REQUIRED)
    find_package(G2O REQUIRED)
    find_package(Sophus REQUIRED)
    
    include_directories(
            ${OpenCV_INCLUDE_DIRS}
            ${G2O_INCLUDE_DIRS}
            ${Sophus_INCLUDE_DIRS}
            "/usr/include/eigen3/"
    )
    
    
    add_executable(3d2d ${SOUR_FILE})
    target_link_libraries(3d2d ${OpenCV_LIBS})
    target_link_libraries(3d2d g2o_core g2o_stuff)
    

    cmake文件夹:FindG2O.cmake

    # Find the header files
    
    FIND_PATH(G2O_INCLUDE_DIR g2o/core/base_vertex.h
      ${G2O_ROOT}/include
      $ENV{G2O_ROOT}/include
      $ENV{G2O_ROOT}
      /usr/local/include
      /usr/include
      /opt/local/include
      /sw/local/include
      /sw/include
      NO_DEFAULT_PATH
      )
    
    # Macro to unify finding both the debug and release versions of the
    # libraries; this is adapted from the OpenSceneGraph FIND_LIBRARY
    # macro.
    
    MACRO(FIND_G2O_LIBRARY MYLIBRARY MYLIBRARYNAME)
    
      FIND_LIBRARY("${MYLIBRARY}_DEBUG"
        NAMES "g2o_${MYLIBRARYNAME}_d"
        PATHS
        ${G2O_ROOT}/lib/Debug
        ${G2O_ROOT}/lib
        $ENV{G2O_ROOT}/lib/Debug
        $ENV{G2O_ROOT}/lib
        NO_DEFAULT_PATH
        )
    
      FIND_LIBRARY("${MYLIBRARY}_DEBUG"
        NAMES "g2o_${MYLIBRARYNAME}_d"
        PATHS
        ~/Library/Frameworks
        /Library/Frameworks
        /usr/local/lib
        /usr/local/lib64
        /usr/lib
        /usr/lib64
        /opt/local/lib
        /sw/local/lib
        /sw/lib
        )
      
      FIND_LIBRARY(${MYLIBRARY}
        NAMES "g2o_${MYLIBRARYNAME}"
        PATHS
        ${G2O_ROOT}/lib/Release
        ${G2O_ROOT}/lib
        $ENV{G2O_ROOT}/lib/Release
        $ENV{G2O_ROOT}/lib
        NO_DEFAULT_PATH
        )
    
      FIND_LIBRARY(${MYLIBRARY}
        NAMES "g2o_${MYLIBRARYNAME}"
        PATHS
        ~/Library/Frameworks
        /Library/Frameworks
        /usr/local/lib
        /usr/local/lib64
        /usr/lib
        /usr/lib64
        /opt/local/lib
        /sw/local/lib
        /sw/lib
        )
      
      IF(NOT ${MYLIBRARY}_DEBUG)
        IF(MYLIBRARY)
          SET(${MYLIBRARY}_DEBUG ${MYLIBRARY})
        ENDIF(MYLIBRARY)
      ENDIF( NOT ${MYLIBRARY}_DEBUG)
      
    ENDMACRO(FIND_G2O_LIBRARY LIBRARY LIBRARYNAME)
    
    # Find the core elements
    FIND_G2O_LIBRARY(G2O_STUFF_LIBRARY stuff)
    FIND_G2O_LIBRARY(G2O_CORE_LIBRARY core)
    
    # Find the CLI library
    FIND_G2O_LIBRARY(G2O_CLI_LIBRARY cli)
    
    # Find the pluggable solvers
    FIND_G2O_LIBRARY(G2O_SOLVER_CHOLMOD solver_cholmod)
    FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE solver_csparse)
    FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE_EXTENSION csparse_extension)
    FIND_G2O_LIBRARY(G2O_SOLVER_DENSE solver_dense)
    FIND_G2O_LIBRARY(G2O_SOLVER_PCG solver_pcg)
    FIND_G2O_LIBRARY(G2O_SOLVER_SLAM2D_LINEAR solver_slam2d_linear)
    FIND_G2O_LIBRARY(G2O_SOLVER_STRUCTURE_ONLY solver_structure_only)
    FIND_G2O_LIBRARY(G2O_SOLVER_EIGEN solver_eigen)
    
    # Find the predefined types
    FIND_G2O_LIBRARY(G2O_TYPES_DATA types_data)
    FIND_G2O_LIBRARY(G2O_TYPES_ICP types_icp)
    FIND_G2O_LIBRARY(G2O_TYPES_SBA types_sba)
    FIND_G2O_LIBRARY(G2O_TYPES_SCLAM2D types_sclam2d)
    FIND_G2O_LIBRARY(G2O_TYPES_SIM3 types_sim3)
    FIND_G2O_LIBRARY(G2O_TYPES_SLAM2D types_slam2d)
    FIND_G2O_LIBRARY(G2O_TYPES_SLAM3D types_slam3d)
    
    # G2O solvers declared found if we found at least one solver
    SET(G2O_SOLVERS_FOUND "NO")
    IF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN)
      SET(G2O_SOLVERS_FOUND "YES")
    ENDIF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN)
    
    # G2O itself declared found if we found the core libraries and at least one solver
    SET(G2O_FOUND "NO")
    IF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)
      SET(G2O_FOUND "YES")
    ENDIF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)
    
  • 相关阅读:
    微信小程序之自定义toast弹窗
    NPOI 设置导出的excel内容样式
    NPOI excel导出快速构建
    GridView 基本使用
    jqgrid 各种方法参数的使用
    经典SQL语句大全
    jqgrid 加载时第一页面只显示多少条数据
    sqlserver2008 调试存储过程
    jqgrid 上移下移单元格
    jgrid 选择器 C#控件
  • 原文地址:https://www.cnblogs.com/penuel/p/13366113.html
Copyright © 2020-2023  润新知