• 图像增强之拉普拉斯锐化---高斯一阶导二阶导数


    图像处理之高斯一阶及二阶导数计算

    图像的一阶与二阶导数计算在图像特征提取与边缘提取中十分重要。一阶与二阶导数的

    作用,通常情况下:

    一阶导数可以反应出图像灰度梯度的变化情况

    二阶导数可以提取出图像的细节同时双响应图像梯度变化情况

    常见的算子有Robot, Sobel算子,二阶常见多数为拉普拉斯算子,如图所示:

    对于一个1D的有限集合数据f(x) = {1…N}, 假设dx的间隔为1则一阶导数计算公式如下:

    Df(x) = f(x+1) – f(x-1) 二阶导数的计算公式为:df(x)= f(x+1) + f(x-1) – 2f(x);

    稍微难一点的则是基于高斯的一阶导数与二阶导数求取,首先看一下高斯的1D与2D的

    公式。一维高斯对应的X阶导数公式:

    二维高斯对应的导数公式:

    二:算法实现

    1.      高斯采样,基于间隔1计算,计算mask窗口计算,这样就跟普通的卷积计算差不多

    2.      设置sigma的值,本例默认为10,首先计算高斯窗口函数,默认为3 * 3

    3.      根据2的结果,计算高斯导数窗口值

    4.      卷积计算像素中心点值。

    注意点:计算高斯函数一定要以零为中心点, 如果窗口函数大小为3,则表达为-1, 0, 1

    三:程序实现关键点

    1.      归一化处理,由于高斯计算出来的窗口值非常的小,必须实现归一化处理。

    2.      亮度提升,对X,Y的梯度计算结果进行了亮度提升,目的是让大家看得更清楚。

    3.      支持一阶与二阶单一方向X,Y偏导数计算

    四:运行效果:

    高斯一阶导数X方向效果

    高斯一阶导数Y方向效果

    五:算法全部源代码:

    [java] view plaincopy
     
      1. /*
        * @author: gloomyfish
        * @date: 2013-11-17
        *
        * Title - Gaussian fist order derivative and second derivative filter
        */
        package com.gloomyfish.image.harris.corner;
        import java.awt.image.BufferedImage;

        import com.gloomyfish.filter.study.AbstractBufferedImageOp;

        public class GaussianDerivativeFilter extends AbstractBufferedImageOp {

        public final static int X_DIRECTION = 0;
        public final static int Y_DIRECTION = 16;
        public final static int XY_DIRECTION = 2;
        public final static int XX_DIRECTION = 4;
        public final static int YY_DIRECTION = 8;

        // private attribute and settings
        private int DIRECTION_TYPE = 0;
        private int GAUSSIAN_WIN_SIZE = 1; // N*2 + 1
        private double sigma = 10; // default

        public GaussianDerivativeFilter()
        {
        System.out.println("高斯一阶及多阶导数滤镜");
        }

        public int getGaussianWinSize() {
        return GAUSSIAN_WIN_SIZE;
        }

        public void setGaussianWinSize(int gAUSSIAN_WIN_SIZE) {
        GAUSSIAN_WIN_SIZE = gAUSSIAN_WIN_SIZE;
        }
        public int getDirectionType() {
        return DIRECTION_TYPE;
        }

        public void setDirectionType(int dIRECTION_TYPE) {
        DIRECTION_TYPE = dIRECTION_TYPE;
        }

        @Override
        public BufferedImage filter(BufferedImage src, BufferedImage dest) {
        int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
        dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0, index2 = 0;
        double xred = 0, xgreen = 0, xblue = 0;
        // double yred = 0, ygreen = 0, yblue = 0;
        int newRow, newCol;
        double[][] winDeviationData = getDirectionData();

        for(int row=0; row<height; row++) {
        int ta = 255, tr = 0, tg = 0, tb = 0;
        for(int col=0; col<width; col++) {
        index = row * width + col;
        for(int subrow = -GAUSSIAN_WIN_SIZE; subrow <= GAUSSIAN_WIN_SIZE; subrow++) {
        for(int subcol = -GAUSSIAN_WIN_SIZE; subcol <= GAUSSIAN_WIN_SIZE; subcol++) {
        newRow = row + subrow;
        newCol = col + subcol;
        if(newRow < 0 || newRow >= height) {
        newRow = row;
        }
        if(newCol < 0 || newCol >= width) {
        newCol = col;
        }
        index2 = newRow * width + newCol;
        tr = (inPixels[index2] >> 16) & 0xff;
        tg = (inPixels[index2] >> 8) & 0xff;
        tb = inPixels[index2] & 0xff;
        xred += (winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tr);
        xgreen +=(winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tg);
        xblue +=(winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tb);
        }
        }

        outPixels[index] = (ta << 24) | (clamp((int)xred) << 16) | (clamp((int)xgreen) << 8) | clamp((int)xblue);

        // clean up values for next pixel
        newRow = newCol = 0;
        xred = xgreen = xblue = 0;
        // yred = ygreen = yblue = 0;
        }
        }

        setRGB( dest, 0, 0, width, height, outPixels );
        return dest;
        }

        private double[][] getDirectionData()
        {
        double[][] winDeviationData = null;
        if(DIRECTION_TYPE == X_DIRECTION)
        {
        winDeviationData = this.getXDirectionDeviation();
        }
        else if(DIRECTION_TYPE == Y_DIRECTION)
        {
        winDeviationData = this.getYDirectionDeviation();
        }
        else if(DIRECTION_TYPE == XY_DIRECTION)
        {
        winDeviationData = this.getXYDirectionDeviation();
        }
        else if(DIRECTION_TYPE == XX_DIRECTION)
        {
        winDeviationData = this.getXXDirectionDeviation();
        }
        else if(DIRECTION_TYPE == YY_DIRECTION)
        {
        winDeviationData = this.getYYDirectionDeviation();
        }
        return winDeviationData;
        }

        public int clamp(int value) {
        // trick, just improve the lightness otherwise image is too darker...
        if(DIRECTION_TYPE == X_DIRECTION || DIRECTION_TYPE == Y_DIRECTION)
        {
        value = value * 10 + 50;
        }
        return value < 0 ? 0 : (value > 255 ? 255 : value);
        }

        // centered on zero and with Gaussian standard deviation
        // parameter : sigma
        public double[][] get2DGaussianData()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] winData = new double[size][size];
        double sigma2 = this.sigma * sigma;
        for(int i=-GAUSSIAN_WIN_SIZE; i<=GAUSSIAN_WIN_SIZE; i++)
        {
        for(int j=-GAUSSIAN_WIN_SIZE; j<=GAUSSIAN_WIN_SIZE; j++)
        {
        double r = i*1 + j*j;
        double sum = -(r/(2*sigma2));
        winData[i + GAUSSIAN_WIN_SIZE][j + GAUSSIAN_WIN_SIZE] = Math.exp(sum);
        }
        }
        return winData;
        }

        public double[][] getXDirectionDeviation()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] data = get2DGaussianData();
        double[][] xDeviation = new double[size][size];
        double sigma2 = this.sigma * sigma;
        for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)
        {
        double c = -(x/sigma2);
        for(int i=0; i<size; i++)
        {
        xDeviation[i][x + GAUSSIAN_WIN_SIZE] = c * data[i][x + GAUSSIAN_WIN_SIZE];
        }
        }
        return xDeviation;
        }

        public double[][] getYDirectionDeviation()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] data = get2DGaussianData();
        double[][] yDeviation = new double[size][size];
        double sigma2 = this.sigma * sigma;
        for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)
        {
        double c = -(y/sigma2);
        for(int i=0; i<size; i++)
        {
        yDeviation[y + GAUSSIAN_WIN_SIZE][i] = c * data[y + GAUSSIAN_WIN_SIZE][i];
        }
        }
        return yDeviation;
        }

        /***
        *
        * @return
        */
        public double[][] getXYDirectionDeviation()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] data = get2DGaussianData();
        double[][] xyDeviation = new double[size][size];
        double sigma2 = sigma * sigma;
        double sigma4 = sigma2 * sigma2;
        // TODO:zhigang
        for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)
        {
        for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)
        {
        double c = -((x*y)/sigma4);
        xyDeviation[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] = c * data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE];
        }
        }
        return normalizeData(xyDeviation);
        }

        private double[][] normalizeData(double[][] data)
        {
        // normalization the data
        double min = data[0][0];
        for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)
        {
        for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)
        {
        if(min > data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE])
        {
        min = data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE];
        }
        }
        }

        for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)
        {
        for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)
        {
        data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] = data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] /min;
        }
        }

        return data;
        }

        public double[][] getXXDirectionDeviation()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] data = get2DGaussianData();
        double[][] xxDeviation = new double[size][size];
        double sigma2 = this.sigma * sigma;
        double sigma4 = sigma2 * sigma2;
        for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)
        {
        double c = -((x - sigma2)/sigma4);
        for(int i=0; i<size; i++)
        {
        xxDeviation[i][x + GAUSSIAN_WIN_SIZE] = c * data[i][x + GAUSSIAN_WIN_SIZE];
        }
        }
        return xxDeviation;
        }

        public double[][] getYYDirectionDeviation()
        {
        int size = GAUSSIAN_WIN_SIZE * 2 + 1;
        double[][] data = get2DGaussianData();
        double[][] yyDeviation = new double[size][size];
        double sigma2 = this.sigma * sigma;
        double sigma4 = sigma2 * sigma2;
        for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)
        {
        double c = -((y - sigma2)/sigma4);
        for(int i=0; i<size; i++)
        {
        yyDeviation[y + GAUSSIAN_WIN_SIZE][i] = c * data[y + GAUSSIAN_WIN_SIZE][i];
        }
        }
        return yyDeviation;
        }

        }

      2. http://blog.csdn.net/jia20003/article/details/16369143
  • 相关阅读:
    Mysql如何修改unique key
    centos 编译 安装 protobuf
    EasyNetQ简单使用
    微信发送模板消息
    Python删除开头空格
    代码积累-Common
    sql With(NoLock),With(ReadPast)
    webform 使用log4net配置
    log4net.dll添加报错
    js-小数计算问题
  • 原文地址:https://www.cnblogs.com/pengkunfan/p/4089113.html
Copyright © 2020-2023  润新知