• AtCoder Beginner Contest 142【D题】【判断素数的模板+求一个数的因子的模板】


    D - Disjoint Set of Common Divisors

    Problem Statement

    Given are positive integers AA and BB.

    Let us choose some number of positive common divisors of AA and BB.

    Here, any two of the chosen divisors must be coprime.

    At most, how many divisors can we choose?

    Definition of common divisorDefinition of being coprimeDefinition of dividing

    Constraints

    • All values in input are integers.
    • 1A,B10121≤A,B≤1012

    Input

    Input is given from Standard Input in the following format:

    AA BB
    

    Output

    Print the maximum number of divisors that can be chosen to satisfy the condition.


    Sample Input 1 Copy

    Copy
    12 18
    

    Sample Output 1 Copy

    Copy
    3
    

    1212 and 1818 have the following positive common divisors: 112233, and 66.

    11 and 22 are coprime, 22 and 33 are coprime, and 33 and 11 are coprime, so we can choose 1122, and 33, which achieve the maximum result.


    Sample Input 2 Copy

    Copy
    420 660
    

    Sample Output 2 Copy

    Copy
    4
    

    Sample Input 3 Copy

    Copy
    1 2019
    

    Sample Output 3 Copy

    Copy
    1
    

    11 and 20192019 have no positive common divisors other than 1

    思路:找出有多少个公因子,并且公因子必须是素数。然后再加一。【比赛时思路一模一样,代码写挫了QAQ】

    AC代码:

     1 #include<bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define int long long
     6 bool isprime(int num){ // 判断是否是素数
     7     if(num==1){
     8         return false;
     9     }
    10     if(num==2)
    11         return true;
    12     if(num%2==0)
    13         return false;
    14     double sqrtNum = sqrt(num);
    15     for (int  i = 3; i <= sqrtNum; i += 2)
    16     {
    17         if (num % i == 0)
    18         {
    19             return false;
    20         }
    21     }
    22     return true;
    23 }
    24 vector<int> v;
    25 signed main(){
    26     int n,m;
    27     cin>>n>>m;
    28     int temp=min(n,m);
    29     for(int i=1;i*i<=temp;i++){ // 求一个数的因子的模板
    30         if(temp%i==0){
    31             v.push_back(i);
    32             if(i*i!=temp){
    33                 v.push_back(temp/i);
    34             }
    35         }
    36     }
    37     int ans=0;
    38     int t=max(n,m);
    39     for(int i=0;i<v.size();i++){
    40         if(t%v[i]==0&&isprime(v[i]))
    41             ans++;
    42     }
    43     cout<<ans+1;
    44     return 0;
    45 }
  • 相关阅读:
    IDEA连接 Oracle数据库
    什么是混合云备份
    什么是阿里云ACA认证
    什么是阿里云ACE认证
    什么是轻量应用服务器
    什么是时序时空数据库TSDB
    什么是数据管理DMS
    什么是分析型数据库PostgreSQL版
    阿里云多端小程序
    阿里云云计算ACP专业认证考试
  • 原文地址:https://www.cnblogs.com/pengge666/p/11606647.html
Copyright © 2020-2023  润新知