• Sum of Digits is Prime


    Sum of Digits is Prime

    August 19, 2014

    For an integer $qgeqslant2$ let $s_q(n)$ denote the $q$-ary sum-of-digits function of a non-negative integer $n$, that is, if $n$ is given by its $q$-ary digits expansion $n=sumlimits_{k=0}^{r} a_k q^{k}$ with digits $a_kin{0,1,ldots,q-1}$ and $a_r eq0$, then
    [s_q(n)=sum_{k=0}^{r} a_k.]

    As usual we write $phi(n)$ for Euler's totient function, and $pi(x)$ for the number of primes up to $x$. We recall the prime    number theorem in the form

    egin{equation}pi(x)=frac{x}{log x}+Oleft(frac{x}{(log x)^2} ight).end{equation}

    Theorem (Drmota/Mauduit/Rivat)    We have uniformly for all integers $kgeqslant 0$ with $(k,q-1)=1$,

    egin{equation}label{eq:2}#{pleqslant x:s_q(p)=k}=frac{q-1}{phi(q)}frac{pi(x)}{sqrt{22pisigma_{q}^{2}log_q x}}left(expleft(-frac{(k-mu_qlog_q x)^2}{2sigma_{q}^{2}log_q x} ight)+Oig((log x)^{-1/2+varepsilon}ig) ight),end{equation}

    where $varepsilon>0$ is arbitrary but fixed, and $mu_q:=frac{q-1}{2}$, $sigma_{q}^{2}:=frac{q^2-1}{12}$.

    From the above result we can deduce some very interesting corollaries. Clearly, eqref{eq:2} shows that every sufficiently large integer is the sum of digits of a prime number. So, in particular, there are infinitely many primes whose sum of digits is   also prime. Also, every sufficiently large prime is the sum of digits of another prime which in turn is the sum of digits of another prime, and so on.

    References

    1. C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591–1646.
    2. Glyn Harman, Counting Primes whose Sum of Digits is Prime, Journal of Integer Sequences, Vol. 15 (2012), Article 12.2.2.
  • 相关阅读:
    C语言和python分别计算文件的md5值
    C语言计算文件大小
    Linux内核源码下载
    Linux系统编程20_VFS虚拟文件系统
    Linux系统编程19_标准I/O
    C语言Review5_函数指针和数组指针
    C语言Review4_头文件引用符号的区别
    PDO之MySql持久化自动重连导致内存溢出
    小程序之app.json not found
    phpstorm之"Can not run PHP Code Sniffer"
  • 原文地址:https://www.cnblogs.com/pengdaoyi/p/4279375.html
Copyright © 2020-2023  润新知