• sklearn.neighbors.kneighbors_graph的简单属性介绍


    connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, include_self=True)
         # kneighbors_graph([X,n_neighbors,mode]) 计算X中k个临近点(列表)对应的权重。
    # metric:字符或者调用,默认值为‘minkowski’ # n_neighbors:整数,可选(默认值为5),用kneighbors_graph查找的近邻数。 # p:整数,可选(默认值为2)。是sklearn.metrics.pairwise.pairwise_distance里的闵可夫斯基度量参数,当 p=1时, # 使用曼哈顿距离。当p=2时,使用的是欧氏距离。对于任意的p,使用闵可夫斯基距离。

    1、n_neighbors:整数,可选(默认值为5),用k_neighbors查找的近邻数。
    2、radius:浮点数,可选(默认值为1.0)
    3、algorithm:{‘auto’,’ball_tree’,’kd_tree’,’brute’},可选 算法用来计算临近的值,‘ball_tree’会用BallTree,’kd_tree’会用KDtree,’brute’会用burte-force来搜寻。
    ‘auto’会基于fit方法来决定大部分相似情况下合适的算法。
    4、NoTe:如果fit用在稀疏(矩阵)的输入上,那么将会覆盖参数的设置,而使用brute force.
    5、leaf_size:整数,可选(默认值为30)
    6、Leaf size是针对BallTree 和 KDTree的。 它将会影响构建模型和搜寻的速度,以及存储的树的内存。可选值将决定该问题的类型。
    7、p:整数,可选(默认值为2)。是sklearn.metrics.pairwise.pairwise_distance里的闵可夫斯基度量参数,当 p=1时,使用曼哈顿距离。当p=2时,使用的是欧氏距离。对于任意的p,使用闵可夫斯基距离。
    8、metric:字符或者调用,默认值为‘minkowski’
    9、metric用来计算距离。scikit-learn或者scipy.spatial.distance中的任何距离都可以被使用。
    如果距离是可选函数,每一对实例都会返回相应的记录值。(无法计算矩阵间的距离。)
    10、metric_params:字典,可选(默认值为1)
    关于距离公式中其他的关键值讨论。
    11、n_jobs:int,可选(默认值为1)
    表示搜寻近邻值时并行作业的数量 。如果为-1,那么并行数量则会被设定为CPU的内核数。
    (只针对k_neighbors 和kneighbors_graph方法)

  • 相关阅读:
    Javascript之DOM的三大节点及部分用法
    Javascript之全局变量和局部变量部分讲解
    《TCP/IP详解 卷1:协议》系列分享专栏
    说一说MySQL的锁机制
    《TCP/IP详解 卷1:协议》第3章 IP:网际协议
    PHP连接MySql闪断自动重连的方法
    关于MySQL的锁机制详解
    React 源码中的依赖注入方法
    《Mysql高级知识》系列分享专栏
    《AngularJS学习整理》系列分享专栏
  • 原文地址:https://www.cnblogs.com/peixu/p/7991662.html
Copyright © 2020-2023  润新知