• (POJ


    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 


    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 


    9 2 
    -4 1 
    -1 8 

    and has a sum of 15. 

    Input
    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output
    Output the sum of the maximal sub-rectangle.

    Sample Input
    4

    0 -2 -7 0

    9 2 -6 2

    -4 1 -4 1

    -1 8 0 -2


    Sample Output
    15


    解题报告:这道题真的是感人,状态转移方程干到我怀疑人生,最后终于搞明白了,下面附上理解图,希望能便于大家理解此题的DP方程


    #include <bits/stdc++.h>
    using namespace std;
    
    int map[110][110],dp[110][110];
    
    int main()
    {
        //freopen("input.txt","r",stdin);
    	int N,a;
        while(~scanf("%d",&N) && N)
        {
            memset(map,0,sizeof(map));
            memset(dp,0,sizeof(dp));
            
    		for(int i = 1; i <= N; i++)
                for(int j = 1; j <= N; j++)
                {
                    scanf("%d",&a);
                    map[i][j] = map[i][j-1] + a;
                    //map[i][j]表示第i行前j列的和
                }
            
            int Max = -0xffffff0;
            
    		for(int j = 1; j <= N; j++)
                for(int i = 1; i <= j; i++)
                {
                    dp[i][j] = 0;
                    
                    for(int k = 1; k <= N; k++)
                    {
                        dp[i][j]= max(dp[i][j]+map[k][j]-map[k][i-1],map[k][j]-map[k][i-1]);
                        if(dp[i][j] > Max)
                         
                            Max = dp[i][j];
                    }
                }
            
            printf("%d
    ",Max);
        }
        return 0;
    }



  • 相关阅读:
    48. Rotate Image
    83. Remove Duplicates from Sorted List
    46. Permutations
    HTML5笔记
    18. 4Sum
    24. Swap Nodes in Pairs
    42. Trapping Rain Water
    Python modf() 函数
    Python min() 函数
    Python max() 函数
  • 原文地址:https://www.cnblogs.com/pearfl/p/10733197.html
Copyright © 2020-2023  润新知