Dijkstra:
裸的算法,O(n^2),使用邻接矩阵:
算法思想:
定义两个集合,一开始集合1只有一个源点,集合2有剩下的点。
STEP1:在集合2中找一个到源点距离最近的顶点k:min{d[k]}
STEP2:把顶点k加入集合1中,同时修改集合2中的剩余顶点j的d[j]是否经过k之后变短,若变短则修改d[j];
if d[k]+a[k,j]<d[j] then d[j]=d[k]+a[k,j];
STEP3:重复STEP1,直到集合2为空为止。
#include <iostream> #include <cstring> using namespace std; #define MAXINT 9999999 int minx,minj,x,y,t,k,n,m,tmp; int v[1000],d[1000],a[1000][1000]; int main() { cin>>n>>m>>k; memset(a,0,sizeof(a)); memset(d,MAXINT,sizeof(d)); memset(v,0,sizeof(v)); d[k]=0; for (int i=1;i<=m;i++) { cin>>x>>y>>t; a[x][y]=t; a[y][x]=t; } for (int i=1;i<=n-1;i++) { minx=MAXINT; for (int j=1;j<=n;j++) if ((v[j]==0)&&(d[j]<minx)) { minx=d[j]; minj=j; } v[minj]=1; for (int j=1;j<=n;j++) if ((v[j]==0)&&(a[minj][j]>0)) { tmp=d[minj]+a[minj][j]; if (tmp<d[j]) d[j]=tmp; } } for (int i=1;i<=n;i++) cout<<d[i]<<" "; cout<<endl; return 0; }
Tips:上述STEP1可以用优先队列优化。
模版:
(使用邻接表,Reference:http://www.cnblogs.com/qijinbiao/archive/2012/10/04/2711780.html)
eg:邻接表
i:某条边的起点 eg[i][j].x:从点i出发的第j条边的终点 eg[i][j].d:这条边的距离
#include <iostream> #include <cstdio> #include <queue> #include <vector> using namespace std; const int Ni = 10000; const int INF = 1<<27; struct node{ int x,d; node(){} node(int a,int b){x=a;d=b;} bool operator < (const node & a) const { if(d==a.d) return x<a.x; else return d > a.d; } }; vector<node> eg[Ni]; int dis[Ni],n; void Dijkstra(int s) { int i; for(i=0;i<=n;i++) dis[i]=INF; dis[s]=0; priority_queue<node> q; q.push(node(s,dis[s])); while(!q.empty()) { node x=q.top();q.pop(); for(i=0;i<eg[x.x].size();i++) { node y=eg[x.x][i]; if(dis[y.x]>x.d+y.d) { dis[y.x]=x.d+y.d; q.push(node(y.x,dis[y.x])); } } } } int main() { int a,b,d,m,k; scanf("%d%d%d",&n,&m,&k); for(int i=0;i<=n;i++) eg[i].clear(); while(m--) { scanf("%d%d%d",&a,&b,&d); eg[a].push_back(node(b,d)); eg[b].push_back(node(a,d)); } Dijkstra(k); for (int i=1;i<=n;i++) printf("%d ",dis[i]); return 0; }
STL优先队列Reference:http://www.cnblogs.com/wanghetao/archive/2012/05/22/2513514.html
SPFA:
即用队列优化过的Bellman-Ford
( Reference:http://blog.csdn.net/niushuai666/article/details/6791765 )
Pascal代码...
var q,d:array[1..1000] of longint; a:array[1..1000,1..1000] of longint; visited:array[1..1000] of boolean; head,tail,s,n,dt,i,j:longint; begin assign(input,'spfa.in'); reset(input); fillchar(d,sizeof(d),127 div 3); fillchar(visited,sizeof(visited),false); fillchar(a,sizeof(a),0); readln(s); d[s]:=0; readln(n); for i:=1 to n do for j:=1 to n do begin read(dt); a[i,j]:=dt; a[j,i]:=dt; { if dt<>0 then begin if i=s then d[j]:=dt; if j=s then d[i]:=dt; end; } end; head:=0; q[1]:=s; visited[s]:=true; tail:=1; while head<tail do begin inc(head); visited[q[head]]:=false; for i:=1 to n do begin if (a[q[head],i]>0) and (d[q[head]]+a[q[head],i]<d[i]) then begin d[i]:=d[q[head]]+a[q[head],i]; if not visited[i] then begin inc(tail); q[tail]:=i; visited[i]:=true; end; end; end; end; for i:=1 to n do write(d[i],' '); writeln; close(input); end.
Floyd:
多源最短路
//path[i,j]:用来输出最短路径 //floyd var path,d:array[1..1000,1..1000] of longint; n,k,i,j,st,en,x,y,tmp:longint; procedure dfs(i,j:longint); begin if path[i,j]>0 then begin dfs(i,path[i,j]); write(path[i,j],'->'); dfs(path[i,j],j); end; end; begin assign(input,'floyd.in'); reset(input); fillchar(d,sizeof(d),127 div 3); readln(n); for i:=1 to n do d[i,i]:=0; for i:=1 to n do for j:=1 to n do path[i,j]:=-1; readln(st,en); while not eof do begin readln(x,y,tmp); d[x,y]:=tmp; d[y,x]:=tmp; path[x,y]:=0; path[y,x]:=0; end; for k:=1 to n do for i:=1 to n do for j:=1 to n do begin if d[i,k]+d[k,j]<d[i,j] then begin d[i,j]:=d[i,k]+d[k,j]; path[i,j]:=k; end; end; writeln(d[st,en]); write(st,'->'); dfs(st,en); writeln(en); close(input); end.